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SUMMARY

The second-degree nonlinear aerrelastic equaticns for a flexible, twisted
nonuniform rotor blade which is undergoing combined flapwise bending, chord-
wise bending, torsion, and extension in forward flight are developed using
Hamilton's principle. The derivation of the equations has its basis in the
geometric nonlinear theory of elasticity and the resulting equations are
consistent with the small deformation approximation in rhich the elongations

and shears are negligible compared to unity and the square of the derivative
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of the extensional deformation of the elastic axis is negligitle compared to
the squares of the bending slopes. The implications of the siender beam
approximation as applied to the derivation of the second-degree nonlinear
equations of motion are discussed and a mathematical ordering scheme which is
compatible with the assumption of a slender beam is 1ngoduced. No assumption
is made regarding the coincidence of the elastic, mass, and tension axes of
the blade, although the elastic and aerodynamic center axes are assumed
coincident at the blade quarter chord. The blade aerodynamic loading is
obtained from strip theory based on a quasi-steady approximation of two-
dimensional, incompressible unsteady airfoil theory. The resulting equations
are compared with several of those existing in the literature. These
comparisons indicate several discrepancies with the present equationms,
particularly in the nonlinear terms. The reasons for these discrepancies

are explained.

INTRODUCTION

Flap-lag-torsion aeroelastic stability of flexible helicopter rotor
blades has been receiving considerable attention in the literature during the
last decade. This problem involves both linear -d nonlinear coupling «mong
the various degrees of freedom. Current emphasis in the literature (see, for
example, references 1 to 10) is being directed at the nonlinear aspects of
the problem as arising from the nonlinear theory of elasticitv, either
directly or indirectly. In general, the nonlinearity of the equations of the
theory of elasticity .an have both geometrical and physical origin (references
11 and 12). Geometric nonlinearity is associated with the nccessity to

consider the deformed configuration in writing the equilibrium equations and
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the need to irclude nonlinear terms in che strain-displacement relations.
Physical nonlinearity is associated with the necessity to consider the
relations between the components of stress and strain as nonlinear. In the
present development only geometrical nonlinearity is considered. The equations
are derived using the level of approximation identified as small deformations
I in reference 13. This level of approximation assumes that the elongations
and shears are negligible compared to unity and that the square of the
derivative of the extensional deformation on the elastic axis is negligible
compared to the squares of the bending slopes. The equations of motion
consistent with this level of approximation may be derived to any desired
degree by retaining the dependent variables to the appropriate degree
throughout the development. The present development will be directed to the
derivation of the second-degree nonlinear equations of motion in which one
formally retains terms through second degree in the dependent variables.
Rigorous adherence to this retention scheme leads to an almost insurmountable
amount of algebra. To circumvent this problem to some extent, usual practice
in the literature dealing with flexible rotor blades is to introduce an
ordering scheme early in the development of the equations. Following this
practice, an ordering scheme which is consistent with the assumption of a
slender btea= is imposed early in the development of the dynamic and elastic
portions o the present equations. The ordering sclieme imposed has both a
mathematical and physical basis and is discussed in Appendix A. No ordering
scheme is imposed in the development of the generalized aerodynamic forces
herein because any ordering scheme which is imposed would depend on the

order assigned to the advance ratio, inflow ratio, and collective and cyclic
pitch, which in turn depend on the flight condition being addressed. To

3



accommodate any flight regime of interest with th: present equations, the
aerodynamic forces are left in general second-degree form from which one can
obtain the aerodynamic forces to ti: order appropriate to anyv case of interest.

The generalized aerodynamic forces are obtained from strip theory based
on a quasi-steady approximation of two-dimensional, incompressible, unsteady
airfoil theory. The effects of reverse flow and stall are not considered.
Consideration of forward flight leads to aerodynamic forces which are periodic.
The solution of the resulting equations requires special procedures such as
Floquet-Liapunov theory or time history solutions by direct numerical
integration. However, in the special case of hover for a rotor having three
or more blades, the resulting equations have constant coefficients and can be
solved using standard eigenvalue techniques.

It was shown in reference 14 that the existence of some linear aerodynamic
coupling terms associated with blade steady-state flapping and lagging in the
perturbation equations for a rigid articulated blade was dependent on the
order in which the flap and lag rotational transformations were imposed while
developing the nonlinear equations of motion, The need for addressing the order
in which the component rotations are imposed when developing nonlinear equations
of motion is a consequence of the fact that the angles of rotation associated
with the flapping and lagging motions must be treated as finite. 1In this case,
the matrices associated with the individual rotations are not commutative. A
preliminary study of the role of the assumed transformation sequence in the
development of the nonlinear flap-lag equations for a flexible blade was also
given in reference 14, The need for addressing the order in which the compunent
rotations are imposed also arises while developing the nonlinear equations for -

an elastic blade. In this case, the angles of rotation associated with the
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deformations must be treated as finite and the matrices associated with the
individual rotations are not commutative. On the basis of those preliminary
considerations, it was shown that aerodynamic coupling terms similar to those
found for a rigid blade will also appear in the equations for a flexibhle
blade. In addition to differences in the aerodynamic terms, reference 14
also showed that the nonlinear curvature expressions which are needed in
deriving the strain expressions are also dependent on the order in which the
rotational transformations are imposed. Reference 13 was directed at more
completely examining the effect of the rotational transformation sequence on
the nonlinear curvatures. As an extension of the work in reference 13, this
report presents an extensive development of the nonlinear aeroelastic equations
in the presence of coupled flapwise bending, edgewise bending, torsion, and
extension, and then examines the effect of the assumed rotational trans-
formation sequence on the form of the equations. OQut of the six possible
rotational transformation sequences which may be imposed, only two will be
addressed here: flap-lag-pitch and lag-flap-pitch.

The present equations will be compared to several sets of corresponding
equations existing in the literature. Several discrepancies with the present
results will be identified, particularly in the nonlinear terms. The reasons
for these discrepancies will be explained. Furthermore, it will be shown
that the particular small deformation approximation considered in the present
report is necessarv to insure the retention of all the linear and second-degree

nonlinear terms in the second-degree nonlinear equations of motion.

F.
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di (1 =1,2...6)

SYMBOLS

airfoil 1ift-curve-slope
cross-sectional area of blade

generalized aercdynamic forces per unit length in X,Y,2

directions, respectively

generalized aerodynamic moment per unit length about

elastic axis
number of blades

boundary terms arising from strain energy, kinetic energy,

and material damping, respectively
section constants

blade chord

airfoil profile drag coefficient
Theodorsen's circulation function
rotor thrust coefficient, T/anZRA

section constants

notation used in writing the virtual work associated with

material damping in concise form
section constants

alir. oil profile drag per unit length



chordwise offset of mass centroid from elastic axis

(positive when in front of elastic axis)

chordwise distance of area centroid of cross section from

elastic axis (positive when in front of elastic axis)
Young's modulus

coefficient of internal friction in tension

unit vectors along x3,y3,z3 axes

unit vectors along XYZ axes

components of aerodynamic force per unit length in Xq,Y3124

directions
shear modulus
coefficient of internal friction in shear

vertical velocity of two-dimensional section normal to

free-stream

generalized inertia forces per unit length in X,Y,Z directions

generalized inertia moment per unit length about elastic axis
area moments of inertia about n and [ axes, respectively
torsional section constant

reduced frequency
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k, i =1,2...6)
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s, (1 =1,2...9)

Su,Sv,Sw,S¢

T R &
LR’LT'LP

polar radius of gyration of cross-sectional area about

elastic axis

notation used in writing the variation of the kinetic

energy in concise form

polar radius of gyration of cross-sectional mass about

2 2 2
elastic axis (km km + km )

1 2
magss radii of gyration about n and [ axes, respectivcly

aerodynamic 1lift per unit length

aerodyiamic pitching moment per unit length about the

deformed elastic axis

mass of blade per urit length

genecalized damping forces

length of blade

position vector of point after deformation
position vector of point before deformation

notation used in writing the variation of the strain

energv in concise form
generalized elastic forces
kinetic energy; also blade tension; also rotor thrust

radial, tangential, and perpendicular components of
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u,Vv,w

W

XYz

X%

velocity for blade airfoil section
resultant of UT and UP

radial foreshortening of elastic axis due to bending

deformations of elastic axis in X,Y, and Z directions,

respectively
strain energy; also forward flight velocitv

relative velocity of point on elastic axis expressed in XYZ

coordinate system

relative velocity of point on elastic axis expressed in

X3 424 coordinate system

wind velocity vector

induced downwash velocity at rotor, positive downward
work done by nonconservative forces

work done by aerodyuamic loading

work done by structural damping

coordinate system with origin at hub centerline which
rotates with blade such that X-axis lies along the initial

or undeformaed position of the elastic axis

inertial axis system with origin at hub centerline and ZI

normal to hub plane
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Xa¥02q

*1Y1%1

X3Y3%3

8
pc

8,2,8

Yxx’Yxn

§ ()

'Y

X5

hub-fixed axis system rotating about the ZI axis with

angrlar velocity Q .

blade~fixed axis system, after deformation, which

translates with respect to X YoZ,

blade-fixed axis system at arbitrary r.... on elastic

axis before deformation

coordinates of point (which was at xoyozo in the unde-

formed blade) In the deformed blade
blade~fixed orthogonal axis system in deformed
configuration obtained by rotating xyz; x3-axis is

tangent to the deformed elastic axis

transformation matrix relating the angular orientation

of the deformed and undeformed blade

Green's strain tensor

airfoil section angle of attack, i = tan-lL'P/UT
shaft angle

angle of built-in coning (precone angle)
Fulerian-type rotation angles between xyz and X3¥424
engineering strain components

variation of ()

small parameter of the order of the bending slopes: also

10
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3
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ept

A(n,q)

airfoll section piftch angle with fespect to free-stream

velocity
tensor strain components

sectional coordinate along major priscipal axis for a

given point on the elastic axis
- A

nT A

sectional coordinate normal to n axis at elastic axis
+ A

¢ n

collective pitch

cyclic pitch components

pitch angle due to kinematic coupling

built-in twist (pretwist), positive when leading edge

is upward

warping function

derivatives of ) with respect to n and [, respectively
inflow ratio, /R = Vsinas - Vi positive upward
advance ratio, u)R = Vcosas

mass density of blade; also mass density of air

total geometric pitch angle B
PAGE
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’Txu’tac

engineering stresses

"ngle of twisting de‘>rmatior about elastic axis, positive

when leading edge is upward

blade azimuth angle measured from downw.nd position in

direction of rotation

torsional curvature

angular velocity of XYZ coordinate system
rotational speed of rotor

circulatory aerodynamic term
noncirculatory aerodynamic term

denotes transpose of matrix

time derivative %?

space derivative %;

MATHEMATICAL MCULEL AND COORDINATE SYSTEMS

The mathematical model chosen to represent the coteor blade in the

present development consists of a straight, slender, variably twisted,

nonuniform beam which can undergo combined flapwise hending, chordwise

bendine, torsion, and extenstfon.

The elastic axis, the mass axis, and the

tension axis (area-centrold axis) are taken to be nonceincident; the elastic

axis and the feathering axis are assumed coincident with the cuarter-chord

-



of the blade. The elastic axis is inc’ined to the plane of rotation at a
small angle in order to accommodate any built-in coning (precone). The model
is valid for blade-root conditions at the shaft centerline which represent
either clamped (hingeless) or pinned (articulated) configurations. In the
latter case, the precone angle would be set tn zero. Based on a quasi-steady
approximation of two-dimensional, unsteady airfoil theory, a distributed
aerodynamic loading in the flapwise and lagwise directions and a distributed
aerodynamic torque about the elastic axis is assumed to be acting on the blade.
Several orthogonal coordinate systems will be employed in the derivation
of the equations of motion; those which are common to both the dynamic and
aerodynamic aspects of the derivation are shown in figures 1 to 4. The axie
systems associated with the blade in its undeformed configuration are given
in figures 1 and 2. The axis system XIYIZI (figure 1) is fixed in an inertial
frame with origin at the centerline of the hub, and the ZI axis is normal to
the plane of the hub. The axis system XQYQZ52 is obtained by rotating about
the positive ZI axis by the angle Y = Qt , where { 1is the constant angular
velocity of the rotor blade. The third axis system shown in figure 1, XYZ,
is obtained by rotating XQYQZQ about the negative YQ axis by an amount ch,
the angle of built-in coning. All deformations of the blade are referenced
to the XYZ system. The X axis is taken to be aligned along the elastic axis
of the undeformed blade. As mentioned above, it is assumed that the elastic
axis, the feathering axis, and the quarter-chord of the blade are coincident.
The geometry of a cross section of the blade at an arbitrary spanwise station
along the X axls before deformation is shown in figure 2. The point of the
cross section through which the elastic axis passes ls given by the inter-

section of the Y and Z axes. The n and { axes with origin at the

13
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elastic axis are principal axes of the cross section and are inclined to the
Y and Z axes by an amount equal to the total geometric pitch angle, 6.

The geometric pitch angle is given by

=8 +06 siny (1)

- b -
pt ke + GC Glccosv 8

ls

¢ is the built-in twist angle {pretwist), ekc is the pitch angle

due to kinematic coupling, SC is the collective pitch angle, and elc and

where ©
P

els are the first harmonic cyclic pitch components. The pretwist (ept) is a

function of the running coordinate x while the collective and cyclic pitch

components cf the control input (ec, elc, els) are independent of both x

and t. The pitch angle due to kinematic coupling (ekc) is to be included in

equation 1 only if the elastic blade has hinges at the root. In this case,

ch is dependent on the rigid-body flapping and lagging motions. The cross

section is assumed to be symmetric with respect to the n axis., During

deformation, the n and { axes are assumed to move with the cross sectiom.
The generalized coordinates defining the configuration of the deformed

blade are shown in figures 3 and 4. The s .tuation depicted in figure 3 is

appropriate to a rotational transformation sequence which is flap, followed

by lag, followed by pitch (flap-lag-pitch sequence) while that shown in figure

4 1s appropriate to a rotational transformation sequence which is lag,

followed by flap, followed by pitch (lag-flap-pitch sequence). When the blade

deforms, the elastic axis at an arbitrary section deforms an amount u in the

X direction, v in the Y direction, and w in the Z direction and the

section rotates about the principal axes due to bending in addition to twisting

an amount ¢ about the elastic axis. Let XYo%s be axes fixed to the

blade at an arbitrary point on the elastic axis of the blade so that before

16 , ""\



deformation XYoZ, are parallel to XYZ, respectively. The deformations u,
v, w, and ¢ both displace XY %, to xyz and rotate xyz to x3y3z3

where the x., axis is tangent to the deformed elastic axis. The rotation

3

of the triad xyz to its final position denoted by x may be effected

33%3
in several ways depending on the sequence in which the analyst chooses to
impose the individual rotations. Two rotational transformation sequences

are considered here. Detailed considerations related to these transformations
are contained in reference 13.

Some comments regarding the geometric pitch angle are in order. The
built-in twist as well as the control inputs and kinematic coupling are present
in the blade even before deformation, as shown in figure 2. Then, when
imposing a rotational sequence between the xyz and X3Y 423 axis systems, the
rotation 9 should be imposed first. However, common practice in the rotor
blade literature is to combine pretwist with elastic torsion. For mathematical

convenience herein, the control inputs and kinematic coupling will be included

with elastic torsion in the same manner as the pretwist.

HAMILTON'S PRINCIPLE
The equations of motion are derived using the extended Hamilton's

principle (reference 15) in the form

t
1

f (8T - &V + SW)dt = O (2)

t

0

where

W = GWD + GWA (3)

ORIGINAL PAGE 18
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In equation 2, T is the kinetic energy, V 1is the strain energy, and W 1is
the work done by all the nonconservative forces, For subsequent convenience,
the nonconservative work is divided into two parts as indicated in equation

3: the first part, 6WD’ due to structural damping and the second part, GWA,
due to the aerodynamic loading. In the following sections explicit expressions
for 8T, 6V, and 6W 1in terms of the dependent variables u, v, w, and ¢ and
the blade sectional properties will be developed for two of the six possible
rotational transformation sequences which may be imposed in arriving at a
relationship between the blade-fixed coordinates of the deformed and un-
deformed blade. 1In this development, the geometric nonlinear theory of
elasticity, in particular the level of approximation in this theory designated

as small deformations I in reference 13, will be employed.

STRAIN ENERGY
The expression for the strain energy of the blade in terms of stresses

and engineering strains is
R
!o= )
v :[O[L O Y T IenYxn * Oxcvxc)d” dg dx (4)

where, using Hooke's law,

Oxx = L Yxx

an =G Yxn

Tyr = 6yt (5)

Assuming small strains, the engineering strains are related to the components

of the strain tensor according to

16
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XX XX
Yxn = Zexn
Yer = 2€xC (6)

Several different definitions of strain may be found in the literature (see,
for example, reference 16). Adopting a Lagrangian description for the strain
(as customary in solid mechanics) wherein measurerments are with respect to
the initial or undeformed configuration, the appropriate strain tensor is
Green's strain tensor [Eij] the components of which (reference 11) can be

written in the form
d

s e = e dn

The quantities d?o and d?l in equation 7 are differentials of the position
vectors to an arbitrary point in the blade cross section in the undeformed
and deformed configurations, respectively. The scalar quanuities d?o . d?o
and d;l * d;l are then the squares of a differential line element before and
after deformation, respectively, where dx dn df are increments along the
undeformed elastic axis and two cross-sectional axes, respectively. This
implies that the strain considered is that along a pretwisted fiber,

The position vector of a generic point in the cross section of the

undeformed blade is given by

- t
X, X - A ept
r,={vy,) =( ncos 6-7sinb (8)
z, negin @+ cos B

whcre the x axis i< aligned along the undeformed elastic axis. The

ORIGINAL PAGE 17
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corresponding point in the deformed blade is given by the sum of the
displacement of the elastic axis due to deformatior and the position of the

point relative to the elastic axis and can be written as

X, x +u - UF —wa3

b T

L=y, )" v + [T] n 9
zy w 4

vhere UF’ the axial displacement assoclated with the foreshortening of the

elastic axis due to bending, is given by

X .2 2
UF = %f ' + w'%dx (10)
0

The transformation matrix [T] relates the deformed blade axis system X3¥ 324

with the undeformed blade axis system xyz. The warping function A 1is a

function of the cross-sectional coordinates 1 and 7 and is obtained by

solving Laplace's equation for the cross section of the blade (reference 17).

The quantity wx is the torsional curvature about the deformed elastic
3

axis which has «x [Tl, and w are

3 X3

functions of the dependent variables u, v, w, and & which are in turn

as its tangent. The quantities UF’
functions of x and t. For convenience of notation the functional
dependence of the quantities on x, t, n, or 7 will not be indicated.

The elements of the transformation matrix [T] in equation 9 depend on
the order in which the sequential rotational transformations from the xyz
system to the x3y3z3 system are imposed by the analyst, as stated earlier.
The particular strains Exx’ exn , and ExC and the associated strain
energy will now be developed for each of the two transformation sequences

considered herein.

18
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which relates X4Y 525

Flap-Lag-Pitch Transformation Sequence
For this particular sequence, the rotational transformat on matrix [T]
to xyz 1is obtained from reference 13 by replacing

z by 6 from equation 1. To second degree, the result is given by

pt
! E - %(v,z + v'z) v! w! ]

!

2 .2
-v-(cu 8 -¢einé ) (1 - v—,‘,- - g—)con ] (G - 1'5-" css 5
- ' fsin 8 + ¢ cos 8 - 9 ofy mE 82y,
[TFLP] v (l n + ¢ cos ) ¢ sin ( A : )-.r. ] (11)
v (ain 6 +dcos® ) -(1 - !;-i- %z-)un [ ‘v'v' - :).sin :‘:
-v'(co- 8 ~¢s8in@ ) -$ cos 6 ‘{‘. - v—,'.i - %i’cox e
L J
From the same reference, the appropriate expression for the torsional
curvature W 1s given by
3
= a' LI 8 [
wx3 ept +¢' - v'w (12)

As already remarked, reference 13 considered pretwist combined with elastic

twist for convenience following earlier practice in the rotor blade litera-

ture. The same expedient 1is employed in the present work. As a consequence

of employing this simplification, the position vector of a point before

deformation as obtained from equation 9 by setting u, v, w, and ¢ to zero

yields the term -xe;t in the X, component (see equation 8). This implies

that axial deformation due to warping exists in the initial configuration

before any deformations are imposed. Such a situation would exist if an

untwisted blade is twisted and then '"frozen" to arrive at the pretwisted

configuration. It should also be noted that reference 13 did not explicitly

consider foreshortening in the development given therein. However, even if

foreshortening is considered explicitly the rotational transformation matrix

19
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[T] remains unchanged for the level of approximation considered in this

report.

Substituting equations 11 and 12 into equation 9, the components of the

final position vector to second degree are given by

X, = x+u~ Up - Aw, =~ VW' +w'd)(n cos 8 - T sin 0)
*3

W' -~ v'¢)(n sin 6 + T cos 0)

12 2

y,. =v-i v'+ (1 AN J(n cos 8 - ¢ sin 9)
1 Xy 2 2

~¢ (n sin 8 + ¢ cos 9)
! .
! W2 82
i z; = w - w w'+ (1 = 5~ )(nsin 8 + Z cos 9)
i Xq 2 2

+ (¢~ v'w')(n cos B - ¢ sin 8) (13)

From equations 8 and 13 the differentials of the position vectors before and

r after deformation, to second degree, are given by

a - " - ' - '
dxo dx (1 xept) xnept dn xgept dg

L ' -
dyo z, ept dx + cos 8 dn ~ sin 6 dg

20
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dz_ = y_ el')t dx + sin 0 dn + cos 6 dZ (14)

and

= [T B '
dxl [1+u UF wa

+

3

- (V" +w"d +w'¢')(N cos 6 - T sin 6)

(v' +w'o)(n sin 8 + 7 cos 0)91'“

W = v"0 ~v'¢")(n 53in 6 + T cos B)

(W' - v'9)(n cos 8 -~ ¢ sin G)GI”J dx

+E;\7m" ~ (V' +w'd) cos 8 ~ (w' ~ v'9) sin 6] dn
3

+F\ W

~ W' = v'd) cos 8 + (v' + w'd) sin e]dt; (15a)

dy, = [v' - )\(wx v' o+ v'w}" ) = (V' 4+ ¢'0)(n cos B - ¢ sin ?)

3

3

2

2
S AR
(1 3 3 J(n sin 8 + T cos e)e‘;t

¢'(n sin 9 + ¢ cos 6) ~ ¢el;t (n cos 6 - 7 sin t‘)] dx

r
a-
-

a-
-

8
)

_ ¢
2

) cos 6 - ¢ 8in B - A w V'Jdn
ﬂx3

\ i + ] -
Y sin € + ¢ cos 6 + Acwx3deu, (15b)

21
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- v o_ " 1ot
dz1 [W )\(wxw +wuux

,2 2 B

+(1-L-L)sin@-ﬁ-(d’-v'w')cosﬁ-)\w w'
2 2 N xg

<

2
sla-%- - £ cos 8- (- Vi) sin 8- A v

3 3

2 2
w' ) _ '
+ (1 - ) Y(n cos B r sin e)ept

+ (@' - v'W' - v'w'")(n cos O - T sin f)

- ((b - v'w')(n sin 6 + [ cos G)B;t] dx

) = (w'w" + ¢4')(n sin B + T cos 8)

X3 .J

dn

dc

(15¢)

Substituting equations 14 and 15 into equation 7, performing the indicated

operations, and collecting terms, the second-degree expressions for the three

strain components of interest become

Yxx

2
- - ! - " 2 2 t a Q'
€ey = U A"+ T+ 270 ept + 5 )
- (v +w"¢)(n cos 6 - T sin 8)

- (w" - v'"¢)(n sin & + F cos ©)

- - _; L + 2 1,1
Yxn Zexn % v'w

sy
-

(16a)

(16b)



e —

Yop = 2y * 0! = nvtu” (16c) ;
|
where ]
n=n- A .
T=g+n a7

It should be pointed out that in arriving at the expressions given in equations
16 above several terms have been discarded based either on considerations
related to the small deformations I level of approximation, as discussed in
reference 13, or on considerations related to the approximations which can be
made because of the assumed slenderness of the blade, as discussed in
reference 18 and in Appendix A. Retention of higher order terms in the
expressions for the strain components is not at all a problem. However,
these higher order terms in the strains lead to higher order terms in the
final equations of motion. Thus, discarding these higher order terms at the
strains level using the considerations of Appendix A simplifies the subsequent
algebraic manipulations.

Taking the first variation of V as given in equation 4 and using

equation 5, yields

R
5V = jo E j L Y 8Y,, dn d5 dx + [ (ﬂ O Yoy + VoSV )dN € dx  (18)

,

where the engineering strains are related to the tensor strain as indicated

in equation 6. Using equations 16 in equation 18, taking the i{ndicated
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variations, and integrating over the cross section leads to
R
= ] " \ " 11
Sv j; sléu + 526¢ + 336<b + sl‘(Sv + sSGw + 56<S¢
1 " ]
+ 37645 + 586w + sgdvjdx (19)

where

sy = EA| o' + kA2(¢' el')t + %¢'2) - eA(v" + ¢w") cos 6 + eA(cbv" -~ w") sin 63

8, = ECch" + E02 Ew" cos § - v'" sin 8 - ¢(w" sin 8 + v" cos G)J

- 2 L L \] [ 1 |2 L 1) 1 lZJ CV .
sS4 EAkA u (ept + ") + EB, eptcp + ept(cb ept + o' )+ E82 ept

(ev'" - w)sin 9 -~ ¢ v" cos 9 - ¢'w" sin & - eét(v" + ow'") cos 6]

= \j - - | 1] - 1]
s, EA e, u (¢ sin 8 -~ cos 6) EBZ d epc cos © I'ZC2 " sin €

+ v CEIfm (sin2 8+ ¢ sin 2 8) + EICC(COSZ A - ¢ sin 2 “)J

+ " E - e
w (EICC EInn)(sin cos 8 + ¢ cos 2 G)J
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S,

- ' F " - 1Y)

8g - EAeAu (¢ cos B + sin 9) + ,C2¢J cos B EBZ¢ Opt sin A
--' T - 5 %+ 1 - ! 6 ’

+ v (F Lz Elnn) sin @ cos o(E cz EInﬂ) cos 2 B

" 2 2 -
+w (:Elnn cos” 8 ¢+ EICc sin® 6 + ¢(EIcc Elnn) sin 2 6:]

- L ] - " 11} | ] 1] - (1) L] 1
86 !AcAu (V" 8in 6 - V" cog ) + EBz(v Spt $' sin 6 - w Oth cos B)

"2

+ v''w" (EIC - !Inn) cos 2 0 +w (EICC - Elnﬂ) sin 6 cos ©

4

+ v“2(£Inn - EIKC) sin 6 cos 6 - EC2¢"(V" cos 6 + w" sin ©)

- | I S 1]
89 GJ¢ v'w (Dl + DZ)G

8y = - ¢'V'(D1 + DZ)G

)G (20)

89 = - o'u"(nl + Dz

The sectional properties appearing in equations 20 ave dcfined as follows:
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A:}Idn dg z\eA =fjndr\, 4z

I-’m ujjgz dn dg I.. =jfn2 dn dg

AlAz -‘U‘(n2 + ¢Hdn dz J =f](ﬁz + 28)an g

B, ‘/f(nz + cz)zdn dg B, =:[]"1 (n2 + Cz)dn dz
cl-jfx 24n de® c, =[fc>dn dz

D, -ﬂnﬁ dn dg D, -f[cg d- d7 '21)

Since the warping function *(n, 7) is typically antisvmmetric in =~ and
and the cross section is assumed symmetrical about the = axis, the

following integrals are zero:

If\d” dc =0 f’(*? + % 4r =0
'ffidﬂdt'o ffncdn dz g 0

jﬁ(“z + Cz)dﬂ dg = 0 fﬁ"d" dz =0 (22)

It should be observed that Dl will be identically zero {f + = rr,
&

Although this i{s not strictly true, for thickness/~Yerd ratios tvpical of

“elicepter rotor hlades the error in assuming that D, {s zero is small.

1

26

-e !



. T A—h W Aty e e s R

Thus, in the following it will be assumed that D, = 0. Then the last three

1

expressions given in equation 20 simplify to

GJo' - v'w"GD

0
L}

2

- ¢'v'GD

- ¢ 'w"GD

n
]

(23)

Integrating equation 19 by parts, the resulting expression can be put

into the form

R
3V i/; \Qudu + Svév + Swﬁw + S¢5¢)dx + By

(24)

where the generalized elastic forces Su, Sv’ Sw, and S¢, to second degree,

are given by

- o 1]
su S1

N [
Sv $ 39

- 1t [1]
Sy = 85 * 8g

27
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and the bhoundary terms BV by

R R R
B, = s.8u| + (s, -s!) dv] +s,8v'| - (s! +3s!) v |
v 1 0 9 4 0 4 0 5 8 0
R R R
+ (s5 + se) Gw']o + (37 +8, - sé) 6¢|0 + 326¢'lo (26)

Lag-Flap-Pitch Transformation Sequence

For this sequence, the matrix which relates the deformed blade
coordinates Xq¥424 tO the undeformed blade coordinates =xyz is obtained
from reference 13 by replacing ept by & from equation 1 and to second

degree is given by

-

) |
l- ?(v'2 * v'z) !
-v'[cos & - ¢ sin @ ) -(C + -"'-"’s-:. H (l - ": - i)s.:. H
[TLFP] m |~ (sin € + ¢ ccs % ) ,(‘_ - \—__'-:-- ;;)::s - R I (27)
\"(s{.r. ¢  + ¢ oocs i } - (c + '.".:')::s H (‘_ - -'—:i - ';- ts %
_-v‘(ccs £ - % osin £ ) —(1 - -\-:'—. - ::-)si:. H - oz

From reference 13, the torsional curvature for this case 1is given by

a B! ' ()
wx3 spt + o' + v'w (28)

Substituting equations 27 and 28 into equation 9, the components of the

final position vector to second degree are given by

28




U

x. =x+u-U,-Aw = (v'+w d)(n cos 8 ~ ¢ sin 0)
1 F x3

= (W' - v'"P)(n sin 6 + T cos 8)

v'2 QE
- - 1 - — - -
yp =V Amxav + (1 5 2 Y(n cos B - 7 sin 0)
- (0 +v'w')(n 8in 6 + 7 cos 9)
02 2
2 =W - wa3w' + Q1 - E§— - %— Y(n sin 8 + ¢ cos 8)
+ ¢ (n cos B - ¢ sin €) (29)

The position vector of a point before deformation is again given by equation
8. Taking the differentials of the position vectors before and after
deformation, substituting the results into equation 7, and collexting terms,

the second-degree expressions for the three strain components of interest

become

2,2 1,:2
Yax = Exx T U T QT+ (T HT@0S + 5 6'T)

- (V" 4+ w" $d)(n cos O - L sin 0)

ORIGINAL PAGE IS = @" = v" ¢)(n sin 8 + T cos 8) (30a)
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Y., =2_ =~-0¢"-7 v (30b)

= - U "ot
YxC Zexc né'+nv'w (30¢)

As before, several higher order terms have been discarded in arriving at

equations 30. Note that these expressions differ from those obtained for

the flap-lag-pitch sequence by only a single term in each of the shear

strains. Proceeding as before, the generalized elastic forces Su, S, S,

v w

and S¢ are given by

[ 1
su S1
S = sz + sy
S - S" - sl

= LL I, 1] -
S¢ sy = 83+ 8; - 85 (31)
and the boundary terms Bv by
IR ’R IR IR
B, = s.8u| = (s! + s8}) 8v| + (s, + s,) 6v'| + s_0w'
\Y 1 0 4 8 0 4 8 0 5 0
R R R
+ (s9 - sg) Sw| + (57 - sé + 33) §¢| + 326¢'| (32)
0 0 0
30
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where s; to s have the same definition as given in equations 20 and

s to s are defined by

7 9

s, = GJ¢' + v'"w'GD,

s, = w'¢'GD

8 2

Sg = V"¢'GD2 (33)

KINETIC ENERGY

The expression for the kinetic energy of the blade in terms of the

velocity of an arbitrary mass point of the blade is given by (reference 15)

R d?l d?l
T = %’ p == * ——dn dz dx (34)
0 A it dt

and its first variation, integrated between to and tl , 1is given by

t t, pR dr dr
fldTil‘l‘[ffo-d—t—l'Ga—Ldndcdx (35)
e e, Jo I/

dr
In equation 35, the absolute velocity of the mass point is -—= and is
t

defined by
+UxXT (36)

where & 1s the angular velocity of the XYZ coordinate system (figure 1),
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and ;1 is the position vector to the mass point. The angular velocity @
is obtained by projecting § along the X, Y, and Z directions and is given
by
w = e e 37
w=§ sin ch ey + 0 cos ch e, (37)
Assuming the precone angle ch to be small, the expression for W can be

approximated by

W=0B8 e, +Qe (38)

Differentiating ;1 with respect to time according to equation 36, the
absolute velocity of the mass point can be written as

dr
——l - . _ - L] - - . -
T (x1 le)eX + (y1 + le Qchzl)eY + (zl + yIQSpc)ez (39)

The generalized inertia forces will now de derived for each of the two

transformation sequences which are addressed herein.

Flap-Lag-Pitch Transformation Sequence

Substituting STRAT and 2, from equations 13 into 39 and the result
into equation 35, integrating by parts over time where necessary, and then
integrating over the cross section, the variation of T can be put into

the form

R
5T :}E (kléu ~ leUF + k26v' + k36v - k46w‘ - k56w + k65¢)dx (40)
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where, consistent with the ordering scheme given in Appendix A,
ky = - mi - iiF) + 2m2[v - e(d + 0) sin 6 - e¢d cos 0]

+mﬂz(x+u- UF— ev' cos 6 - ew' sin 9)

- mﬂzspc(w + e sin 6 + ed .08 0) + mev' cos O
+ me[ (W' - v'e - Z;I'é) sin 0 + (2v.v'é + w‘é') cos 9]

kz = n£22e¢x sin 6 - 2meQV cos 6 - mesz cos O

k3-m§22(v+ecos 8 - ed sin 6) -mii+me($+§) sin 9+2m$28p

- 20 (u - I.Y: - ev' cos 6 - ew' sin 8)

k4 = nﬂzecbx cos 0 + 2mlev sin 6 + uﬂzex sin 6

- . N o * 2
ks mw + me(d + 6) cos 6 + ZMBPCV + mQ chx

3
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k, = -w'(2mflev cos O + nﬂzex cos 8) - szecbv cos 0

6

-nﬂzd)(kz-kz) cos 26-—m92(k2 -k2 ) sin 6 cos ©
m, m, m, my

+ medV cos 6 + 2uev'v sin O + nﬂzexv' sin 6
- nﬂzev sin 6 + med¢w sin 6 + mSZZchecbx sin 6

+ ZmQCe sin 6 (u - {JF) - (k2 - k2 )‘.J' sin 6 cos O
e I |

- (k2 sin2 0+ k2 c.:cos2 8)] + mev sin 8
m m
2 1

- 2m8 ew sin 6 - mkz(&; + 5) - m.QzB ex cos O
pc m pc

- me¥ cos O - 2mnepce6 cos O 41)

The sectional properties appearing in equations 41 are defined as follows:

m=ffpdn dzg me =ff pn dn dg

A A

mk2 ijczdn dg mk? = fpnz dn dg
my m,

k2 =k o+l (42)

From symmetry of the cross section about the n axis and the anti-symmetry

of the warping function, the following integrals have been set to zero:
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ffocdndC=0 f]oncdndc=0
prx dndz =0 jfpxn dn dg = 0 (43)

Since Ug is a function of v' and w', the term involving GUF in equation

40 requires separate treatment. Using equation 10, the second term in

equation 40 can be written in the expanded form

R R | x
j k.8U_ dx =[ k (w'dw! + v'év')dx | dx (44)
1 F 1
0 0 0
which can be further rewritten as

R R
f k16UF dx -j“[:J‘ ky d:a W'Sw' + v'év')dx (45)
0 0 X

Defining the tension T as
R
T -f kl dx (46)
X

equation 45 can be written as

R R
[ k16UF dx -] T(w'Sw' + v'év')dx (47)
o] 0

Integrating equation 40 by parts, the resulting expression can be put into

the form

R
8T = fo (Iuéu + Ivﬁv + Iwaw + I¢6¢)dx + BT (48)
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vhere the generalized inertia forces Iu’ Iv’ Iw’ and I¢ are given by

= = = '
Iu kl T

a 1! Tyt
IV k2+k3+('rv)

- k! — Yyt
Iw kd k5 + (Iw')
Iy = kg (49)
and the boundary terms BT by
R R
B, = (k, - Tv')év | - (k, + Tw')éw | (50)
T 2 0 4 0

Lag-Flap-Pitch Transformation Sequence

Proceeding as in the previous section, this time using X1s Yq» and 2y
from equations 29, the generalized inertia forces Iu’ IV, Iw’ and I¢ and
the boundary terms BT for a lag~flap-pitch sequence are identical to
those obtained in the previous section for a flap~lag-pitch sequence.
Formally, the generalized inertia forces corresponding to the two trans-
formation sequences addressed are different. However, because of the

ordering scheme employed (see Appendix A) the differences, which occur in the

higher order terms, disappear.
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VIRTUAL WORK DUE TO MATCRIAL DAMPING

The virtual work due to the dissipative forces associated with
structural (material) damping can be expressed in the form

4

W = L

b Q, Sq, (51)

k=l 'k

where QD is the generalized damping force associated with the kth

dependentkvariable and qu is the variation of the kth dependent variable.
In the present development the generalized damping forces accounting for the
dissipation of energy due to material damping will be taken to be those
consistent with the assumption of a material which exhibits a linear visco-
elastic behavior. This theory (see, for example, references 19 and 20)
assumes that the stresses are linear functions of the strains and strain
rates. Such a behavior is analogous to a spring and a dashpot in parallel,
. and a model which exhibits such a behavior is often termed a Kelvin-Voigt
solid in the literature (references 20 and 21). A model of this type was

used in reference 22 for a rotating beam. For the stresses and strains of

interest herein, these constitutive relations have the form

oo
Txx = EYxx + E Yxx

xn xn xn
LIS
Txc - GYXC +G Yx: (52)
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where E and G are Young's modulus and the shear modulus, respectively,

and E* and G* are coefficients which take into account internal damping

of the material in tension and shear, respectively. The first term on the
right hand side of each of equations 52 contributes to the usual elastic

strain energy and have already been treated in an earlier section. Considering
only the dissipstive terms in equations 52, the virtual work of the structural

dissipative forces can be written as

, R
. R
5w --] n'[f §y__dn d -[ *] v "
D A AY’“ Yex 9N dg dx o G A (’xn ‘sYxn+Yxt; 67xc)d” dz dx

(53)

The result given in equation 53 is general. However, because of the lack of
knowledge as to the distribution of damping, only the direct damping terms
are generally retained in practice. Thus, off-~diagonal terms accounting for
damping coupling between the dependent variables which arise from equation
53 are taken to be zero and only the direct damping terms associated with the
dependent variables are retained. In addition to adopting this expedient in
the present development, it will also be assumed that a first approximation
to the direct damping terms can be obtained by retaining only the linear
damping terms in the final equations of motion. Thus, it is sufficient to
retain terms up to only first degree in the expressions for the strains. To
first degree the resulting strain expressions will be the same for both of

the transformation sequences, specifically

38



2 2 ' "
Yo " U M+ (T4 )¢'ept =~ v" (n cos A ~ 7 sin 0)
- w'(n sin 6 + Z cos 0)
[ c ¢
Yo 4]
- n '
Yo no (54)

Substituting equations 54 into squation 53, integrating over the cross

section, and retaining only the linear direct damping terms leads to

R
- ' " ' " ' '
W, jo (dj6u’ + d, 80" + d 60" + d,sv" + dgsu" + d.5¢')dx

(55)
where
L] ‘Y
t'll1 = K Au
. '"
dz = K 610
dy = l'tle': o'
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d, = E* (1 c052 A +1 siuz 9)\.1"
4 44 nn

d = E*(I sl 1? h+1 c:m;2 9)\:1"
5 Gy ]

H

A
d, =G J¢' (56)

6

IfRegrating equation 55 by parts, the generalized damping forces QD ’
u

Q. » Q. , and Q become
Dv Dw D¢

' LI !
QD = dl = .(E Au')

" - e * 2 ": ." "
q = -4, Cz (I, cos” 8 + 1 sin e)vj

- " = - * 2 -aﬂ
oy = -dj = - (', sin® @+ 1 cos Oow

- - " '
QD a." +d.' +d

Ve S(BNCOM" + (E'B0 1% + (630 (5D
2 tdy tdg 1 1%p¢

and the boundary terms 36" become

D
) ) ) )
B = -d.8u +d,'Sv - 4,6v' + d."6w
GWD 1 0 4 0 4 0 5 0
R R R
- \ - ”~ ' - '
d v [0 (dy =~ dy' +dEd |0 d, 86 Io (58)
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GENERALIZED AERODYNAMIC FORCES

The aerodynamic forces will be generated from two-~dimensional,
incompressible, quasi~steady, strip theory in which only the velocity
components perpendicular to the spanwise axis of the deformed blade ( the
Xy axis) are assumed to influence the aerodynamic loading. Account is
taken of the pulsating free-stream velocity V(t) associatéd with a rotating
blade by employing Greenberg's extension of Theodorsen's unsteady theory
(reference 23) for determining the aerodynamic 1lift and pitching momunt
acting on the blade. The resulting expressions are specialized to the case
of quasi-steady flow by setting Theodorsen's circulation function to unity.
Classical blade element momentum theory is used to calculate the steady flow
induced by the rotor.

Tn the present application of Greenterg's theory, the airfoil is taken
to bé pivoted in pitch about the aerodynamic center at the quarter chord
and to be executing harmonic motions in pitch (e(t)) and plunge (ﬂ(t)) while
immersed in a pulsating airstream V(t), as shown in figure 5. The 1lift
and moment acting on an elemental section of the blade may be expressed in

terms of the circulatory and noncirculatory components as

L= Lo + Iy

M= MC + MNC (59)

Assuming that the blade elastic axis i1s coincident with the aerodynamic

center at the quarter chord, the individual components of equation 59 follow

41 GE I8
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from reference 23 and can be written as

2

LNC=3208%-(§+VE:+"J€ +%§) (60a)
L, = kpacV(h + Ve + 5 €) (60b)
Mo = —spac (%)z(fle +h+ -38—"‘- £) (60¢)
M, = -%pac(%‘;)2 2ve (60d)

In the course of arriving at the circulatory terms in equations 60, the
quasi-steady approximation has been introduced by setting the reduced
frequency k to zero, in consequence of which Theodorsen's circulation
function C(k) assumes the value of unity, The noncirculatory lift and
moment are associated with apparent mass forces and are oftentimes discarded
in rotor blade applications. Note that Greenberg's modification (i.e., a
pulsating stream in which v # 0) appears only in the noncirculatory
expressions for the 1ift and moment. Hence, if one assumes, a priori, that
apparent mass forces will be neglected there is no Greenberg modification.

The 1lifts and moments given in equations 60 must now be expressed in
terms of UR’ UT' and UP’ the radial, tangential, and perpendicular velocity
compone-ts relative to a point on the elastic axis of the airfoil (figure 6).
Now the expression in the parentheses of equation 60a for LNC is the

downward acceleration of the mid-chord point of the airfoil, and the

42



B = e yup—

v

»

expression in the parentheses of equation 60b for LC is the downward

velocity of the three-quarter-chord point of the airfoil. Since UP is

the relative velocity component perpendicular to the quarter-chord, the

sectional 1lifts can also be written as

2 .
Ly = %08 % (- U, + % ) (61a)
L, = %pacU(- U, + % ) (61b)

where V(t), appearing outside the parentheses of equation 60b, has been
approximated by the resultant of only the tangential and perpendicular

velocity components and is given by
N ;\, 2 2
V—U—U,I,+UP (62)

As indicated in figure 7, the noncirculatory lift acts normal to the section
chordline* and the circulatory lift acts normal to the resultant velocity U.

The profile drag force acts parallel to U and is given by

C
D = ¥pac CIo U2 (63)

a

where Cd is the (constant) profile drag coefficient.
o

The components of the aerodynamic forces in the directions of the Yy

and z, axes are given by

*A portion of LNC acts at the 3/4—&hord point and anothei' at the 1/2~
chord point. However, the resultant of thece two components is shown along

the z, axis in figure 7 only for pictorial convenience.
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F =-L,sin o ~D cos a (64a)

Y3 c
Fz3 = LC cos o + LNC - D sina (64b)
where, from figure 7,
sin a = UP/U
cos o = UT/U (65)

and U 1is given by equation 62. .he aerodynamic force in the Xq direction

is given bv Fx and is a profile drag force which is a function of the
3

radial velocity component U Following usual practice, this force

R

component is assumed to have a negligible effect on stability and Fx is
3
taken to be zero. Substituting equations 61, 63, and 65 into equations 64 and

assuming that UP/UT and Cd /a are negligible compared to unity leads to

)
2 c¢.+ %4 2
= 1 - L -
Fy %pac UP 3 UPe _o UT:J (66a)
3 a
c : c c\2 .
Fz3 %pac[r— UPUT + E-UTE -2 UP + (4) {] (66b)

The noncirculatory and circulatory moments given in equations 60c and 60d can

be written in terms of UT’ U,, and € and assume the form

P
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c\2 . T
MNC = “}pac (ZO [:— UP - UTe +-§— € (67a)

= _1 c\2 .
MC Lpac (4) 2 UTe (67b)

from which the total pitching ioment M¢ is given by the sum of equations

67a and 67b as

My(= M, ) = hoac &? EJTé -U, + 3 E (68)

It should be remarked here that for the special casec involving only coupled
flapwise and edgewise bending which is often addressed in the literature, the
quasi-steady approximation to the aerodynamic loading is usually taken to be
completely determined by the square of the resultant of UT and UP

acting at the quarter chord of the section. It is interesting to note that
the quasi-steady approximation of the 1ift arrived at by setting C(k) = 1

in the general unsteady aerodynamic expressions of Theodorsen and discarding
all the noncirculatory terms contains an additional term involving é (see

equation 61b) which does not arise when proceeding in the other manner.

The virtual work of the aerodynamic forces can be written as
R
6wA - ]0 (A 8u + ASv + A Sw + A¢6¢)dx (69)

where the generalized aerodynamic forces Au’ Av, Aw, and A¢ are given by :
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A F (70)

and

A¢ - M¢(- Mx3) (71)*
where [T] is the rotational transformation matrix which relates the
coordinate axes of the deformed and undeformed blade and Fx3 has been set
to zero. The explicit form of the matrix depends on the rotational sequence
employed in arriving at the matrix [T], as already mentioned. In order to
obtain explicit expressions for the generalized aerodynamic fcrces, the
quantities F 3, Fz3, and Mx3 must be known in terms of the'dependent
variables u, v, w, and ¢, and the geometric pitch angle 8. This requires
that hT’ UP, and € first be obtained in terms of these quantities.

The resultant velocities seen by a point on the elastic axis of the

blade in the deformed and the undeformed coordinate systems are related

according to

v « [T]V (72)

x3y3z3 XYZ

where, from figure 6,

*No transformation is needed for A¢ since the rotation ¢ 1is about

the .
X, axisv,
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1

=Ue -Ue =~-U.e (73)
*3Y3%3

ard vXYZ’ the total relative velocity (aerodynamic + dynamic) of a point on

the elastic axis of the blade, is given by

- "~ dI-l
Yovz " | Va " & | (74)
XYZ

The aerodynamic velocity components seen by a blade element are shown in
figure 8. Using figures 1 and 8, the flow relative to the blade due to

forward flight velocity V and induced flow v, can be written as
(Va)XYZ = (MOR cos Y + QRAch)ex ~ ufiR sin Y ey
+ (ORA - uQRBpC cos w)ez (75)

where the advance ratio u and inflow ratio A are defined by

wR = V cos ag
AQR = V sin a - vy (76)

The induced velocity A 18 calculated by equating the integrated thrust

to the thrust from momentum theory using the relations

CoR
L —————
2\ u? + 22 a7
ORIGINAL PAGE 18
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b 1 -{ijrk
Cp = — — A Ay (78)
T 2m anzR4 o 0 wo

where A 1s the steady-state value of A.w obtained from equation 70.

0
On the elastic axis

r

1" (x+u - UF) ey + ve, + we, (79)

and is independent of the transformation sequence. Using equation 79 in
conjunction with equations 36 and 38 the dynamic velocity of a point on the

elastic axis taken with respect to the XYZ axis system is given by

dr
1 L] . - . -
[c;t ]XYZ = (u - UF - Qv)ex + [v - Qchw + Q(x +u -~ UF)] ey

+ (w + Qchv)ez (80)

Combining equations 75 and 80 according to equation 74 gives the total

velocity seen by a point on the elastic axis as

VXYZ - [}QR cos § + QRABPC -u+ UF + Qv:] ey

-
+ QBPC w-v-(x+u- UF) - uQR sin {] ey
-
e . _
- ) =gy -
+ M?RA uﬂRch cos ¥ - w QBPCV:] e, (81)

The quantity € appearing in equations 66 and 68 is the angular

velocity of the blade section about the local X4 axis and, consistent with
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the preseat notation, can be written as éx3' It can be regarded as
composed of three parts: the first part arising from the rigid-body
angular velocity of the hub in space, the second part arising from the
control inputs and kinem.tic couplings, and the third part arising from the
angular velocity associated with the elastic deformations., Since the only

rigid-body angular velocity of the hub in the present mathematical model is

that due to the blade rotational speed 2, the first contribution to éx

3
is obtained from
e f’QB )
X4 pc
{ “Ys g = [T] { o)
: Q
\ 23/ ¢q N/ (82)

The contribution of the control inputs and kinematic coupling to the rigid-

body pitching motion of the section is given by

(€ ) (83)

chke

The contribution to éx3 associated with the elastic deformation is

obtained by projecting the component angular velocities é, ;', and ;' onto
the X4 axis. Formally, all three components can be obtained by replacing
the derivatives of the Fuler angles B8', {', and 8' in the initial step of

the derivation of tiie nonlinear curvature expressions in reference 14 by £,

7, and 0 and then continuing the development. This 1> equivalent to
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replacing v", w", and ¢' by v', w', and ¢, respectively, in the
curvature expressions given in reference 1l4. In the next two sections,

explicit expressions for UT’ U., and € will be developed.

P’

Flap~Lag~Pitch Transformation Sequence

For this transformation sequence, the tangential and perpendicular
velocity components UT and UP are obtained from equations 72 and 73

using [TFLP] from equation 11 and V

XYZ from equation 81 and, to second-

degree in the dependent variables, have the form
UT = [v'(cos 0 - ¢ sin 68) +w' (sin 6 + ¢ cos 6)] [QRABPC + uQR cos 1}]

+ (v' cos 6 + w' sin 8) (v - l..l)

r
- | ¢ sin 6 ~ (1-——2—- L)cos 6][9x+uﬂksinlb]
L
+ rS’u+v-§'28 w] [cosG-tbsinO]-QU cos 9
-
r‘
uQB cosw-QRA] (1-——-9—) sin 6 + (¢ - v'w') cos(a

+ rw + QB v] [sin 0 + ¢ cos 9] (84a)
L pe
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UP - [}QR cos Y + QRABP;] [}'(cos 0~ ¢ sin 8) - v'(sin 6 + ¢ cos 62]

P
+] w' cos 6 ~ v' sin 6:] (QV-I'I) +QUF sin 8
L
[~ n 2 2
-1 Qx + uURR sin ¥ [El - !é-- %—) sin 6 + ¢ cos %]
- o
- i
+i10B w-v~-0u sin 6 + ¢ cos ©
L P¢ »

r 2 .2
+ ]R8 cos y- GRA] J(v'w' - ) sin B+ (1 - E— - &) cos 6
q pc 2 2

-
+|w + QB v] E:os 6 - ¢ sin e] (84b)
e pe

Using equation 82 with [T] = [TFLP] from equation 11, the sectional pitching

velocity dus to 2 1is found to be

. vlz W'z .

(ex3)ﬂ = Qch(l -5 - —E—) + (85)
The sectional pitching velocity associated with the control inputs and kinematic
coupling is given by

-8

ke + Olcﬂ sin ¥ - 6189 cos Y (86)

(cxa)c&kc

Replacing ¢' by ¢ and w" by w' 1in equation 12 (while discarding the
pretwist), the sectional pitching velocity due to the elastic deformation is

given by
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-k,

Lw s

—

- - gyt
(€x3)deformation ¢ -wiv (87)

Combining equations 85, 86, and 87, the total sectional pitching velocity is

6(-6 )-QB (1-"—2-'- 2)+Qw'+¢~wv
X,
+ 0ye +91c$'2 smw-elsn cos VY (88)

Equations 84 and 88 in combination with equations 66 and 68 are sufficient to

obtain the generalized aerodynamic forces from equations 70 and 71.

Lag-Flap-Pitch Transformation Sequence

For this transformation sequence, the tangential and perpendicular

velocity components U,r and UP are obtained from equations 72 and 73 using

[TLFP] from equation 27 and VXYZ from equation 81, and, to second degree in

the dependent variables, have the form

3

|8

E?v-u:][ cos G + u' sinGJ EZx-&uQRsinw]
-(¢+vw)sin6+(1—-——-£)cos8J+[v+‘2u-§‘6 w]
-

r - - 1 ) - RN
cos ept ¢ sin F)J QLF cos 9 + [uQRchcos Y R] .
-

iu,}R cos § + QRIB J['(cOS 6 - ¢ sin 9) + w'(sin & + # cos 8)]




[1—-——-9;) sin6+¢c086]+[w+98 VJ[sinB*'¢C°8‘i]

(88a)

UP = [nﬂn cos Y + QRABP‘_;.] [v'(cos 6~ ¢ 8in 6) ~ v'(sin 6 + ¢ cos 6)]
+[:’2v - u:] [w' ces 6 - v' sin 9] -[umt sin ¥ + Qx].

E¢ + v'w')cos 8 + (1 - -—-- - L)sin ]+[98pcw -v- Qu].

Eb cos 8 + sin 6]+ QUF sin 6 + [uQRchcos v - QRA] '
El -T--Q—)cos 6 - ¢ sin © [w+QB v] [cos 8 - ¢ sin e]

(89b)

Using equation 82 with [T] = [TLFP] from equation 27 and replacing ¢' by ¢
and v" by v' in aquation 28 (while discarding the pretwist), che resultant

pitching velocity of the section is

. 'Y ’2 |2
€ (= ¢ )-QB (1--—--—)+Qw+¢+v
X4 2
+ ch + elcn sin y - 6189 cos Y (90)

Equations 89 and 90 in combination with equations 66 and 68 are sufficiemg to

obtain the generalized serodynamic forces from equations 70 and 71.
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SUMMARY OF EQUATIONS

Expressions for 6T, &V, and &W have been obtained above for twe
rotational transformation sequences. Substituting these expressions and
their associaﬁg‘ boundary terms into equation 2 there results an expression

of the form

t R
jl{] [C )Su+ ( )ov+ ( )Sw+ ( )6¢]dx+l§dt-o (91)
t 0
o

For arbitrary, admissible variations 6&u, 8v, 8w, and &8¢, the four expressions
in parentheses must vanish individually as must the ase-~.L.y of boundary

terms denoted by B. The first conditie~ will yield the four goverring
nonlinear differential equation, for u, v, w, and & and the second

condition will give the associated boundary conditions at the ends of the

beam. Since the control inpnts are assumed to be known functions of time and
the dynamics of the kinematic control mechanism are not considered, tle
equations associated with the control and kinematic motions will not appear.
The governing equations of motion and boundary conditions are summarized

below for each of the two sequences considered.

Flap-Lag-Pitch Transformation Seqience

Extension:

m(u - UF) - me(v' cos U +w' sin 8) - 2mi[. - e(d + Dsin € - 04" cas )

2 2
- m“(x + u - UF - ev' cos % - ew' sin ') + m Spc(w + e sin '+ creos )

54

P



L34

- 1 2 \ ] —_ " 1" n - 1"
{EAlu' + kA¢ ept eA(v + ¢w") cos 6 + eA(¢v w'") sin 9]
* .
+ EAu') = A (92a)

Chordwise bending:

mv - me($ + 5) sin 6 - ZmQché - mﬂz(v + e cos 6 - ed sin 8)
+ {me[sz(¢ sin 6 - cos 6) - 20v cos 0] + ¢'w"GD2}'

+ 2m(u - 6F - ev' cos 6 - ew' sin 0) - (Tv")'

+ {EAeAu'(¢ sin & - cos 8) - EB2¢' Gét cos B

- EC2¢" sin 08 + w"[(EICC - EInn)(sin B cos 8+ ¢ cos 2 9)]

+ v"[EIm(sin2 8 + ¢ sin 2 ) + EI C(cos2 B - ¢ sin 2 8)]

c
* 2 2 “u " -
+ E (ICC cos® 0 + Inn sin® 8)v'"} Av (92b)
Flapwise bending:
. . . . '
m + me(dp + 6) cos 6 + ZnQBPcv - (Tw'")
2 ]

- {ne[R°x(¢ cos 6 + sin 6) + 20V sin 0]}
| + {Ecza" cos 6 - EB,¢' e;t sin 8 - EAe,u’(¢ cos 8 + sin 6)
| 55
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+ w'[EI cos2 8 + EI sin2 8 + cb(EIg

n - - EInn) sin 2 8]

g

+ v"[(EICC - EInn)(sin 8 cos 6 + ¢ cos 2 8)] - ¢'v' GD2
* 2 2 1] "_ _ 2
+ E (ICE sin® 8 + Iﬂﬂ cos” Q)w"} = Aw ) chx (92¢)
Torsion:

2 »e .. 2 2 2
mkm(¢ + 8) + 2 ¢(km2 - kml) cos 2 8

me[sz(w' cos 8 - v' sin 8) - (V - sz) sin 6 + ¥ cos 8]

+

+ mﬂze¢(v cos B - prc sin 8)

2m2[e sin 6 (u - U.) - (k2 - k2 Yv' sin @ cos 6
F m2 ml

2 sin2 8+ k2 cos2 8) - eR (v cos 0 + w sin 8)1]
m, my pc
+ Zer;(w' cos 8 - v' sin 8) - med(V cos @ + w sin 8)

N
+ {EC1¢" + EC2[w" cos 8 - v'" sin @ - ¢(w'" sin 6 + v*" cos B) + E Cl¢”}

2, ' ' v 2, Vo oyt
{EAkAu (ept+¢)+“19pc ¢! + GJo v'"0D,

+ EBZ[Bét(¢v" -w') sin 8 - ¢'v" cos B8 - ¢'w" sin ©
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1 " " * '2.1 *.' '
ept(v + ¢w") cos O] + E Blept d' + G J¢'}

- EInn)[v"w" cos 2 0 + (w"2 - v"z) sin 6 cos 6]

+ EB2¢' eét(v" sin 6 -~ w" cos 8) - ECZ¢"(V" cos 6 + w" sin 0)

+ EAeAu'(v" sin 8 - w" cos 6) N‘M¢ - nﬂzﬁpcex cos 0O

- m@?(x ? -k %) sin 6 cos 6 (92d)
m m
2 1
The assembled collection of boundary terms denoted by B is given by
B = By - B, + By, (93)

D

and the requirement of the vanishing of the individual variational components

leads to the relations
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R
(sl + dl)Gu Io =0

R
'+ d, "6y | =0

(k, - Tv' - 8
2 0

+ s

9 4

R
(s4 + da)dv' Io =0

IR
- 8o' - d.")ow -
8 5 0

' e
(k4 + Tw

o

8g

R
+ ds)Gw' | =0
0

(s5 + 8g

57

.t“wnm»-«a-,-:.«w«



L X4

R

(3, + 84 =5, +dy-d)’ +d.)6¢ |0 =0
R
! =
(s, + d;)60 10 0 (94)

from which the boundary conditions can be identified.
The tension T appearing in equations 92 and 94 is given to second

order by

R “ ..
T ij' m [— u - UF) + e(V' cos 0 + w' sin 8) + 20[v - e(d + 8)sin 8]
x

+ Qz(x +u-U,-ev' cos § - ew' sin B)

F

2
- 0% (v + e stn e)] dx (95)

The terms UF and GF in the expression for T given in equation 95 lead

to third-degree nonlinear terms when T 1is substituted into equations 92 and
94 and can be discarded. Also, after substituting for T in these equations
only resulting terms which are consistent with the ordering scheme adopted in

Appendix A should be retained. Using the result given in equation 95 in

combination with the extensional equation of motion given in equation 92a

(with damping and set to zero), an alternative definition of T can be
given as
= ' 2,1 a1 - 1" " "o
T = EAfu' + kA ¢ ept eA(v + ¢w')cos 9 + eA(¢v w')sin 6] (96)

As indicated earlier, the generalized aerodynamic forces Au’ Av’ Aw' and A¢
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are obtained from equations 70 and 71 using equations 84 and 88 in combination
with equations 66 and 68 and retaining terms through second degree in the
dependent variables. Because of the generality of the present development
these second-degree expressions are extremely lengthy and will not be shown.
For simplicity, comparison of the present aecodynamic results with those
existing in the literature will be done using U, UP’ and é, which are the

primary ingredients of the generalized aerodynamic forces.

Lag-Flap~-Pitch Transformation Sequence
Extension:
n(u - BF) -~ me(V' cos 6 +w' sin 8) - 2m[v - e(& + 0)sin 6 - edd cos O]
- mﬂz(x +u - UF - ev' cos 8 - ew' sin 0) + mQZch(w + e sin 6
2
+ - 1 ' L " "
ed cos 8) - {EA[u' + kA ) Opt eA(v + ¢w'") cos 8

. 1]
+ eA(¢v" - w") sin 8] + E*Au'} = Au (97a)

Chordwise bending:

m - me($ + 5) sin 6 - ZmQBPCQ - mﬂz(v + e cos 8 - edp sin 8)
- {me[ﬂzx(cos 8 - ¢ sin 0) + 20v cos G]}'

+ 2mﬂ(6 - GF - ev' cos 6 - ew' sin 8) - (Tv')' ORI
GINAL PAGE B
OF LES
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S,

[ - s

e e e i b o s e

- - t v - "
+ {EAeAu'(¢ sin 6 - cos 8) EB,¢ Bpt cos B ECZ¢ sin ©
+ v"[EIrm(sin2 0+ ¢sin 2 8) + EICC(COSZ 8 ~ ¢ sin 2 9)]

+w [(EIC - Elnn)(sin 8 cos 6 + ¢ cos 2 9)]

4

* 2 2 *n ) " =
+ E (Iggcos 8 + In sin® O)v'" + ¢'w GD2} A, (97b)

n

Flapwise bending:

e + me($ + é) cos O + ZmQBPCQ - (Tw')'

. ]
- {me[sz(sin O + ¢ cos 8) + v sin 8] - ¢'v" GDz}
+ {~ EAeAu'(¢ cos B + sin 9) + ECZ¢" cos 6 ~ EBZ¢'e;t sin 0

+ v [(EIC - EIHH)(Sin B cos 8+ ¢ cos 2 8)]

g

" 2 2
7 +E 8 + -
+ w [EIHHCOS G I__sin ¢(EI; Elnn)sin 2 8]

44 A

2

* o 2 N n 2
+ " = -
+ E (ICCSin ) Inncos 8)w'"'} A, ~ o chx (97¢)

2, .0 2 2 2
mkm(¢ + 8) + m ¢(km - km ) cos 2 8

2 1

+ me[sz(w’ cos 0 ~ v' sin 8) - (v - sz)sin 8 + w cos 8]

60
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+ mﬂze¢(v cos 6 - prcsin 8)

2m[e sin 6(u - UF) - (k 2 _ k 2)6' sin 8 cos 8
b I |

- w'(k 2 sin2 8 +k 2 cos2 8) - eB__(v' cos 0 + w' sin 0)]
2 n pe

+ ZerG(w' cos O - v' sin 8) - med(V cos O + w sin 0)

+ {EC1¢" + ECz[w" cos 6 - v'" sin 6 - ¢(w" sin 8 + v'" cos 6)] + E*Clé"}"

2 L} ] L '2 ] L "1
{EAkAu (ept +¢') + EB1 6pt¢ + GJ¢' + v'w GD2

+ EBz[eét(¢v" - w") sin 6 - ¢'v'" cos 8 - ¢'w" sin O

24t + c"5é'}!

1 1" " * L
Bpt(v + ¢w") cos 8] + E Blep

+ (EI__ - EInn)[v"w" cos 2 6 + (w"2 - v"z) sin 8 cos 8]

44

+ EBZ¢'9;t(v" sin 8 - w'" cos 6) - ECZ¢"(V" cos O + w" sin 6)

() - - - 2
+ EAeAu (v'" sin 8 - w'" cos 0) M¢ m chex cos 9

- mﬂz(k 2 _ k 2)91n 0 cos O (97d)
b I |

The boundary conditons follow from
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R
(s1 + dl)Gu Io = 0

R
(ky = Tv' +5,' +sg' +d,")8v ]o =0
R
' =
(s, + 8g +d,)8v ]0 0
R
] - | B 1] -
(k, + Tw' + 85 - 55 - d.')ow l0 0
R
(85 + dg)ow' | =0
0
R
- ! - ' =
(s, -8, +85+d;-d,)' +d)8¢ IO 0
R
' =
(s, + d,)80 |0 0 (98)

The tension T 1is the same as that given in equation 95 above for the flap-
lag-pitch sequence. The generalized aerodynamic forces Au’ Av’ Aw, and A¢
are obtained from equations 70 and 71 using equations 89 and 90 in
conjunction with equations 66 and 68 and retaining terms through second
degree in the dependent variables. Again, for simplicity, comparisons with

the literature will be made using UT’ UP’ and E.

COMPARISONS AND DISCUSSION

In this section the nonlinear aeroelastic equations of motion developed

above will be compared with some of the more recent literature dealing with
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flexible rotor blades. These comparisons will reveal several differences
with the present results. In order to most clearly explain tnese di "‘erences
attention will be directed to e or more of several of the fundamental
quantities which are needed in the development of the equations of motion
including: (1) the rotational transformation matrix relating the angular
orientation of the deformed and the undeformed blade; (2) the blade curvature
expressions; (3) the strain expressions; and (4) the tangential and perpen-
dicular components of the blade velocity.

Reference 1 derived the nonlinear aeroelastic equations for bending and
torsion of a rotating beam. Although no Iindication was given in this
reference as to the sequence in which the rotations were imposed while
developing the equations of motion and the resultant rotational transformation
matrix was not given, it can be shown that the transformation matrix which

leads to the displacement field given in equations B-1 and B-2 of reference 1

is given by
g -
1 v' w'
[T]ref. 171" (v! cos ¢ + w' sin ¢) cos ¢ sin ¢ (99)
v' sin ¢ - w' cos ¢ -sin ¢ cos ¢
- -

To second degree, equation 99 can be written as

2
(1] -V -w'd 1- %— ® (100)

ref. 1 -
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Comparing the result given in equation 100 to either equations 11 or 27 after

. AN Y DA

setting the pretwist to zero, it is clear *that reference 1 has retained the
nonlinear terms involving ¢ but has discarded all second~degree terms which
involve squares and products of v' and w'. It 1s interesting to note that
in this case [T] is the same for both of the rotational sequences considered
herein. Specializing equation 20 of reference 13 to the case of small strains,
the curvatures can be written in terms of the direction cosines relating the

deformed and undeformed blade coordinates as

- ' '
wxa 1312 + m3m2 + n3n2

= ' ' '
wy3 2123 + mym, + nln3

- ' ' '
! w, lzll + m,m; + n,ny (101)

Substituting the direction cosines from equation 100 into equation 101, the

curvatures become

w = V" + wll ¢ (102)

Using the orthogonality relations
2223 +mm, +nn, =0

273 23
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Q1£3 + mlm3 + nln3 = 0

2122 + mlm2 + nln2 = (

the curvature relations given by equations 101 can be written in the

alternative form

- - ' ' '
wx3 (2213 + m,m3 + n,n, )

a - 1 ' '
my (2321 + m,my + n3nl)

3
= - ' ' '
w, (2122 + m,m) + nn,

3 172

Equations 104 lead to the curvatures

Now the curvatures obtained using the relations given in equations 101 and

(103)

(104)

(105)

104 should be identical. However, comparing the resulting expressions given

by equatioas 102 and 105, it is seen that the bending curvatures are in

agreement but the torsionai curvatures differ in the nonlinear terms.

This

disagreement is 4 direct consequence of the use of a rotational transformation
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matrix (equation 100) which was partially linearized. 1In fact, as pointed out
in reference 13, the second-degree terms in the curvature expressions have no
meaning if all the second-degree terms are not retained in the transformation
matrix. The fact that the nonlinear terms in the bending curvatures are in
agreement is only fortuitous. It is easy to verify that the curvatures
obtained from equations 101 and 104 are identical if the comple' . second-degree
expression for [T], such as given by equations 11 or 27, is used. Employing

results based on the use of equation 100, reference 1 concluded that the

~

N »
de de de .
derivatives of the elastic axis strains ( d2n3 d5;3 dﬁb in the notation

of reference 1) were not small compared to the elastic axis curvatures

(k_,k__, and K__, in the notation of that reference). This conclusion is

m° g ng
at variance with that of reference 11. In ihis connection, it should be noted
that if the complete second-degree expression for [T] is employed rather than
that given in equation 100, the derivatives in question are in fact zero
to second degree.

Reference 2 derived the transformation matrix relating the deformed and
undeformed blade coordinates for a lag-flap-pitch rotational sequence in
connection with efforts aimed at identifying the effects of certain second-
order terms associated with combined flapwise and edgewise bending on the
expression for the angle of attack (and hence 1lift) of an elastic rotor blade.
While expressing the Euler rotation angles 7, 3, and 8 in terms of the
dependent variables v, w, and ¢, reference 2 took exception to the third
Euler angle 6 by first arbitrarily defining the torsional rotation rate

W (wx in the present notation) as being equal to ¢' 1in the absence

i
3
of pretwist and then '"solving" a differential equation for [T] to obtafin #.
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To second degree in the dependent variables this procedure gives

r
9 = ¢ -f v'w'dr (106)
o

The nonlinear term appearing in equation 106 was designated "kinematic pitch
rotation" in reference 2. Since the transformation matrix [T] is a

function of 6, the substitution of 6 as given by equation 106 into
equation 3 of reference 2 will lead to a second-degree expression for [T] in
which the kinematic bitch rotation term apj .r- explicitly throughout the matrix.
Using this expression for [T], reference 2 obtained UT and UP and then
wrote the expression for the 1ift, from which the expression for the angle of
attack could be identified. The resulting expression for the angle o’ attack,
given in equation 8 of reference 2, contains the kinematic pitch rotation
term - érv"w'dr. In contrast, the present result for [T!, give in equation
27, and UT and UP’ given bv equations 89a and 89b, do not contain the
kinematic pitch rotation term. Reference 2 obéiined this term because it
ident{fied w, as being equal to ¢' and regarded - as an unknown, rather

i

than identify.ng 6 as being equal to ¢ and taking vy as an unknown. The

reason for proceeding in this manuer was not given in reference 2. As already

pointed out in references 13 and 14, the identification of 4, with ¢' is

1
at variance with the literature dealing with the elasticity of beams in which
8 1s set equal to ¢ and w,  as well as the two bending curvatures are

regarded as the unknowns. If one proceeds in this latter manner, the solution of

equation 4 of reference 2 for wy ylelds
w = ¢' + v'w' (igg)
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and the kinematic pitch rotation will not appear in either the expression .or
@ or in the expression for the angle of attack which is in agreement with
the present results. Thus, the kinematic pitch rotation term does not exist
and its appearance in equations 3 and 8 of reference 2 is spurious.

The development of the nonlinear equations of motion for coupled bending
and torsion of a twisted rotor blade in a vacuum was given in reference 4 and
forms the basis of the numerical results given earlier in reference 3 in
which aerodynamics vere included. The equations given in references 3 and 4
were derived using the transformation matrix developed in reference 2 but
extended to include pretwist. This extension, which is given iu the Appendix
of reference 4, follows reference 2 in arbitrarily assuming that the torsional

curvature is known and ziven by

w, = Gét + o' (108)

and iﬁpn solving for the third Euler angle ”. To second degree, this vieclds

- x
S = ept + P —j; v'w'dx (109)

which is equation A-6 in reference 4, Since [T] is a function of 5, the
substitution of 2quaiion A-6 of reference 4 into equacion A-3 will lead to a
second-dJegree expression for (T] in which the kinematic pitch rotation term
appears. The present result for [T] given in cquatfon 27 does not contain
this term. This term was obtained in reference 4 be.ause that reference

arbitrarily identified w, as being equal to D;t + ¢' and regurde! ¢ as

i

an unknown rather than taking

08
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-é = 61;')(‘_ + ¢' (110)

and, following customary practice in the elasticity literature, treating w

i
as an unknown just like the bending curvatures. If the latter approach is
adopted, ome finds that the torsional curvature is given by

1 1] ' ]
w = ept + ¢' + v'w (111)

and that the kinematic pitch rotation term does not appear in [T], in
agreement with the present results. Thus, the kinematic pitch rotation term
of reference 4 is also spurious. Using the trans’ormation matrix which
includes the kinematic pitch rotation terms, reference 4 derived the components
of the strain tensor in Eulerian coordinates, which is based on the use of
coordinates for the final or deformed state. The present expressions for the
strains given in equations 30 have been derived using a Lagrangian description
of the def~rmation, which is based on the use of coordinates of the initial

or undeformed state. This is the usual approach employed in solid mechanics.
Comparing the present strains given in equations 30 with those given in
equations 24 to 26 of reference 4, one can identify one difference in the
expression for the extensional strain and one difference in each of the
expressions for the shear strains. The difference in the extensional strain

12 + w'2) which appears in equation 24 of reference 4

involves the term !s(v
but does not appear in the present result given in equation 30a. The absence
of this term in equation 30a is due to the fact that the present development

explicitly includes the second degree terms associated with the foreshortening

of the e’astic axis due to bending in the axial displacement field (see equation

69
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29) whereas refecence 4 does not. However, the fureshortening effect may te
accounted for without explicitly including these terms in the axial displace-
ment field, although special considerations are required in this case
(reference 24). Reference 4 has apparentlv followed such as alternative
approach., The difference in the shears is reflected in the absence of the
term involving v'w' in the expressions for the shear strains given in
reference 4. The absence of the term v'w' in the shear strains of reference
4 is related to the use of the incorrect expression for the third Euler

angle given by equation 109, rather than the correct one given by equation
110, in the expression for [T]. It is interesting to note that if the

correct torsional curvature expression given by equation 111 were used in the
general expressions for the shear strains given in equations 20b and 20c of
reference 4, the term v'w' would appear in the final shear strains given in
equations 25 and 26 of that reference. The differences associated with the
term v'"w' will lead to non-vauishing differences in the generalized elastic
forces appearing in the final equations of motion of the present study and
those appearing in reference 4., In particular, when compared to the present
resulcs reference 4 lacks the terms (¢' w' GD2)" in the chordwise equation of
motion, -(¢' v" GDZ)' in the flapwise equation of motion, and (v'" w' GD2)'

in the torsion equation of motion. These terms are of the same order as ot.
terms arising from the strain energy which are retained in the final equaticoc
of reference 4. If one invokes the basic assumption of reference 4 that terms
of 0(€2) are negligible compared to unity and applies it to the inertial terms
of the present extensional equation given by equation 97a, the resulting
equation (with damping set to zero) is in agreement with that given by equation
6la of reference 4. Except for the additional terms mentioned above, the
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present chordwise and flapwise bending equations given in equations 97b and
97c¢ (with dampirg set to zero) are in agreement with the corresponding
equations in reference 4. The present torsion equation given in 974 is in
agreement with that of reference 4 if the ordering scheme of that reference is
applied to the present torsion equation. However, the ordering scheme
employed in reference 4 requires that exception be taken to the ordering scheme
as applied to the torsional equation in order not to lose terms which, from
both physical and mathematical considerations, should be retained. The
present torsion equation contains many elastic and inertial terms which
reference 4 does not have because the ordering scheme adopted in the present
development is more general than that employed in reference 4.

Reference 5 extends the development of reference 4 to include variable
structural coupling and hover aerodynamics and presents an analytical trend
study of stability in hover. Some earlier numerical results based on these
equations for the case of zero structural coupling were given in reference 3.
Since reference 5 is based on the dynamic and elastic development given in
reference 4, all comments made in the discussion of reference 4 are also
applicable to reference 5 and will not be repeated here. Thus, the comments
to be made here will be directed only to the aerodynamic aspects of reference
5. Since the present expressions for the lift and moment as a function of
UT’ UP’ and € given in equations 61 and 68 are in agreement with the
corresponding expressions given in reference 5, any differences between the
present results and those given in reference 5 can be identified most easily

by comparing the resultant expressions for U UP’ and é. Specializing the

T)
present results given in equations 89 and 90 to the case of hover with zero

cyclic pitch and no kinematic coupling and applying the same ordering scheme
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as in reference 5, the present expressions for UT’ UP’ and € are given -
below along with those from reference 5 (in the present notation) for
comparison.

Present:

U, =0x +V

[=
it

_Qx(0 + ¢+ v'w') - v(8 + 6) - AOR + w + (B, + w')

e =0+ 2, + w') + v (112)

Reference 5:
, U, =0ax+ v

X
p= " Qx(@ + ¢ + v'w' —f v'w'dx) - v(8 + 9) - AOR + w + Qv(ch +w')
0 ,

o]
1]

c=0+ QB +w) (113)

Comparing these two sets of expressions one can observe two differences.

o G = e

The first difference is related to the presence of the so-called kinematic
pitch rotation term éxv"w'dx in the expression for Up of reference 5. This
term does not appear in the present result for UP‘ As discussed earlier while
commenting on references 2 and 4, this term is spurious. The second difference
{nvolves the term v'w' which does aot appear in the expression for €

given in reference 5. This difference is also a consequence of the arbitrary
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identification of w, with ¢'. A curious aspect of the ordering scheme of

i
reference 5 is its assumption of O = 0(1) in the structural portion of the
derivation but 6 = 0(g) in the aerodynamic portion. There appears to be no
rationale for this dual ordering scheme. 1In this connection, it is interesting
to note that if Bpt is taken to be 0(1l) in the entire development, several
terms must be discarded jin the resulting expression for UP of reference 5
according to the ordering scheme therein, including the spurious kinematic
pitch rotation term.

In the comparisons made with the literature thus far, the point has been
made that references 2 to 5 have all obtained a spurious nonlinear term as a
consequence of an arbitrary identification of the torsional curvature with
either e;t + ¢' or ¢', depending on whether pretwist is present or not.
This appears to have a direct bearing on a recent criticism in the literature
(reference 25) of some work of Prandtl and Reissner (references 26 and 27)
dealing with the lateral buckling of slender cantilever beams. Using equation

5 of reference 2, reference 25 obtained the result given in equation 3.6

therein which can be written in the present notation as

~ X
o = ¢ -[ v"wo'dx (114)
o

where the subscrirt denotes the pre-buckled condition. The lateral shear
force Ny which follows from a first integral of Kirchoff's lateral equilib-

rium equation, was then given as

x
N, = P[¢ -[0 v"wo'dx] (115)

where P is the tip load acting in the plane of maximum flexural rigidity.
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This result, as pointed out in reference 25, does not agree either with the
expression given in reference 26 or with the different expression given in
reference 27. 1If Kirchoff's lateral equilibrium equation is solved for N1
using the torsional curvature associated with a flap-lag-pitch rotational

sequence and the resulting expression is perturbed about the equilibrium

position specified in reference 25 one obtains

Nl =P($p - wé v') (116)

which agrees with Prandtl's result as given in reference 25. If one solves
for Nl using the torsional curvature associated with a lag-flap-pitch

sequence one obtains

N, =P ¢ (117)

which is Reissner's result as given in reference 25. This suggests that the
differences between the results of Prandtl and Reissner might be associated
with their use of torsional curvature expressions corresponding to two
different rotational transformation sequences.

Nonlinear aeroelastic equations of motion describing the coupled flap-lag-
torsion dynamics of a cantilevered rotor blade in hover were presented in
reference 8, which {s based on an earlier development given in reference 6,
More recently, reference 8 has been extended in reference 10 to include
various unsteady aerodynamic theories in a hover stability analvsis. Although
the majority of the immediate comments will be directed to references 6 and 8,
they are also applicable to reference 10. The expression for the extensional
strain given in equation 1 of reference 8 was obtained by following the
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procedure given in reference 28 but retaining second order quantities
associated with elastic torsion. This expression Is different from the one
given in equation 30a herein, but they can be shown to be equivalent by
eliminating u' from equation 30a in the manner indicated in reference 28.
This is done by making use of the equilibrium condition that the integral of
the longitudinal stress over the cross section must be equal to the total
tension T, solving the resulting expression for u', and then substituting
back into equation 30a. It is interesting to note that the analytical
development in reference 6, which is cited as the basis of the inertial and
aerodynamic expressions given in reference 8, is based on the use of a
rotational transformation matrix [T] in which all the nonlinear terms
involving v' and w' have been discarded. The matrix [T] will not be
orthogonal to second degree in the dependent variables and, in line with the
reasoning given earlier in the discussion of reference 1, the retention of the
nonlinear terms involving v'" and w" 1in equation 1 of reference 8 is not
consistent with the ordering scheme employed for [T] in reference 6. The
expressions for the shear strains are not given in reference 8. However, from
the form of the generalized elastic forces given therein, it appears that

the shear strains used in reference 8 are

= - 1
2€xn 4

2 Exc = no' (118)

the effects of warping being assumed zero, Comparing these expressions to those
given herein by equations 30b and 30c after setting u, &, and X to zero, it
75
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can be seea that reference 8 does not have the nonlinear term involving v''w'.
It thus appears as though there is a difference in the level of approximation
ascribed to the extensional and shear strains. As already indicated earlier,
these terms lead to second-degree terms in the equations of motion which are
of the same order as the terms which are retained in reference 8. These
differences can be identified by comparing the elastic terms in equations 97b,
97c, and 97d of the present results to equations 2 to 4 of reference 8. The

expressions for U, and UP given in reference 8 were developed in reference

T
6 and written with respect to the blade local coordinate system resulting
after the lag and flap rotations are imposed whereas the present results are
written with respect to the blade local coordinate system resulting after the
three rotations lag-flap-pitch are imposed. The two sets of expressions can
be compared, however, after setting &, ¢, and u to zero in the ,resent

results. For this comparison, both the present results and those of reference

8 in the present notation are given below.

Present:
v'2
o ' ¢ - ) - e L.
LT fvwv' + v + rQ(1 5 ) QUF + “Rprcv Qchw
. w'z
- ' - J.A A S 1oyt Q ' ¢
UP Quw' + w ORA (1 3 ) rQv'w' + QRAB cw + QBPCV (119)
Reference 8:
UT = v + 0
M = ' y - 0 3
bP Qw' + w - R\ + s.epcv (120)
76



Lt e —

If the ordering scheme of reference 8 is adopted, the underlined terms in
equation 119 can be discarded. The resulting expression for UT is then in
agreement with that of reference 8 but the resulting expression for UP is not
in agreement with that of reference 8. The present expression for UP contains
the additional term -rQv'w' which 1s of the same order as the nonlinear term
which is retained in reference 8. Reference 8 did not obtain this term
because the transformation matrix [T] which was used to obtain the velocity
expressions did not contain the nonlinear terms involving v' and w'. It
should be noted that the term -rQv'w' 'opposes" the term Quw' in the
expression for UP' 1f this expression is specialized to the case of a rigid
articulated blade, these two terms will cancel (reference 14). Consequently,
the expression for UP given in reference 8 will not reduce to the correct
expression for UP for a rigid articulated blade having a lag-flap hinge
sequence. The contribution of the blade pitching angular velocity to the
1ift and moment are reflected in the ¢ terms in the present development. In
reference 8 this effect appears to be reflected solely in the terms 62 + ¢*
which appear in the component lift expressions. The terms Qch + 0w+ v,
which appear in equation 90 of the present results, are not contained in
reference 8.

References 7 and 9 considered the case of covpled flap-lag stability in
forward flight. The comments will be directed to reference 9 but are equally
applicable to reference 7. The present results for UT and UP with 6, ¢, and

u set to zero are given below as well as those of reference 9 in the present

notation for comparison.
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Present:

. l2 |2 .
UT =v+ Q1 - !E_) + uOR sin ¢ (1 - !5—) + UQR cos Y v'
' o_ " _
+ Qvv QUF + uQRABPCV QSpcw
1 ] w'2
= - - —— t ] ]
UP w - QRA(1 _2_? + Qvw' + uR cos Y w' + QRAB v

2
- !.'_. - L P [ )
+ uQRch cos Y1 3 ) rQv'w URR sin ¥ v'w' + QBPCV (121)

Reference 9:

UT = v+ + UR sin ¥ + ulR cos ¥ v'

UP = w - ORA + 9w’ + WOR ceos L ow' o+ uﬁRch cos ¥ + QBDCV (122)
If the ordering scheme of reference 9 is adopted, the singly underlined terms in
equations 121 can be discarded. The resulting expression for UT is then in
agreement with that of reference 9 but the resulting expression for UP is not

in agreement with that of reference 9. The present expression for UP contains
two additional terms which are doubly underlined in equation 121. These terms
are of the same order as the nonlinear term which is retained in reference 9.

As stated earlier, the loss of these terms is due to the partial linearization
of the matrix [T]. It is also interesting to note that if u 1is taken to be

of 0(c), as in reference 6, rather than of 0(1), as in refercnce 9, the

ordering scheme of reference 9 would necessitate discarding the term
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-uQR sin ¥ v'w' and would imply that v' was negligible compared to unity.
However, the considerations of appendix B clearly show that one must not
assume the bending slopes (that is, w' and v') are negligible compared to

unity if one is deriving the nonlincz» tending equations.

SOME ADDITIONAL COMMENTS ON THE NONLINEAR
EQUATIONS OF MOTION

The present equations for a lag-flap-pitch rotational transformation
sequence have been compared with several sets of corresponding equations
existing in the literature. Several discrepancies with the present results
were identified, particularly in the nonlinear terms. It was shown in the
literature that the aeroelastic stability of hingeless rotor blades is
sensitive to the nonlinear terms in the equations of motion. Hence, the next
step is to solve the present nonlinear equations for the lag-:lap-pitch
sequence including the new terms in order to assess the significance of the
discrepancies identified on aeroelastic stability.

The present report has also examined the implications of the assumed
rotational transformatian sequence between the coordinates of the deformed
and undeformed blade on the form of the final second-degree nonlinear equations
of motion. The need for considering the rotational transformation sequence
arises from the need to specify the position vector of an arbitrary point on
the blade in the deformed configuration. This position vector is obtained by
performing a sequence of rotations and translations from inertial axes fixed

in space tc axes fixed at the arbitrary point on the blade in the Jefnirw &
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configuration. In this case, rotation of coordinate axes corresponds to
matrix multiplication and translation of coordinate axes corresponds to matrix
addition. The sequence in which the individual rotations due to flapwise
bending, chordwise bending, and torsion are imposed is cf importance here H
because of the nonlinear nature of the governing equations of motion. As
mentioned earlier in the Introduction, the angles of rotation associated with
the deformations must be treated as finite and the transformation matrices
associated with the individual rotations are not rommutative. In the case of
a rigid articulated btlade, the physical arrangement of the hinges dictates the
order in which the component rotations must be .mposed while specifying the
position vector to an arbitrary point on the tlade. However, if the blade is
flexible, the order in which the individual rotations are imposed is a
prerogative of the :malyst. Out of the six possible rotational transformation
sequences, the lag-flap-pitch sequence seems to have been preferred by rotor
dynamicists. However, no rationale is given for this preferential treatment.
In this connection, it should be mentioned that in other disciplines, the
possibility of alternative rotational transformation sequences is admiftted
(see, for example, references 21, 29, and 30).

The present report has considered two of the six possible rotational
transformation sequences which may be imposed between the coordinates of the
deformed and undeformed blade while developing * nonlinear equations of &
rotor blade: flap-lag-pitch and lag-flap-pitch. The two sets of equaticns
resulting from the imposition of these two rotational transformation sequences
are different in the nonlinear terms. Some comments on the meaning oi the
existence of two difrferent sets of equations describing one physical system
are in order. From a mathematical point of view, one may interpret these two
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sets of equations as representing two different nonlinear approximations of a
given physical svstem. A physical interprelation is also possible. If the
two sets of equations are specialized to the case of a rigid blude having only
rigid body flapping, lagging, and pitching degrees of freedom, the resulting
sets of equations will still be different. One set of equations will
correspond to those of a centrally-hinged, fully-articulﬁted rigid blade
having a hinge arrangement which is flap-lag-pitch and the other set of
equations will correspond to those of a centrally~hinged, fully-articulated
rigid blade having a hinge arrangement which is lag-flap-pitch. 1In t!g?
special case involving only the rigid body flapping and lagging freed&ﬁﬁ,

the resulting two sets of =2quations agree with those previously derived in
reference 14 for a rigid articulated rotor blade. This suggests that the two
sets of equations obtained herein for the flexible blade reflect two possible
virtual hinge sequences. In prelimindﬁy investigations, flexible hingeless
rotor blades are often analyzed using a rigid articulated blade mathematical
mcdel through the concept of virtual Binges. In this connection, it should be
remarked that the hinge sequence in the mathematical mrdel for the rigid
articulated blade used to analyze a hingeless fl-xible blade should be
compatibie with the virtual hinge sequence of the physical svstem.

Reference 14 showed that there are differences in stahilitv for a rigid
articulated blade depending on the hi-ge sequence. The question which then
naturally arises is whether or not thepe are similar differences in stability
for the flexible blade depending on the agsumned order of the rotational trans-
formation matrix. The two sets of equations derived aerein for the flexible
blade differ in the nonlinear terms in both the aerodvnamic and elastic terms,
in contrast to those for the rigid biade (reference 14) where there are
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differences only in the aerodynamic terms. In the case of a flexible blade,
the effect of the differences irn the elastic forces on stability may negate
the effect of the differences in the aerodynamic forces oii stability and thus
lead to a single stability boundary as expected from physical consideratinns.
This remairs to be established numerically,

The present equations have been developed in such a manner that reduced
degree-of-freedom cases of the general equations can be ot tained by simply .
deleting the equations and dependent variables corresponding to the degrees
of freedom which are to be supnressed. In fact, degrecs of frecdom which are
not of interest can be suppressed in this manner at any stage in the present
development. This expediency is possible because the present develcopment
explicitly considers the axial foreshortening of the elastic axis due to
bending. Special considerations are required if tforernortening is nct
considered explicitlv (reference 24). The linear equations of motion arc
obtained by simplv discarding ail nonlinear terms in the ecquations of intcrest,

In particular, the linear ccupled flap-lag-torsion equations of referen-ce 28
for the case in which the axis of rctation passes throug: the elastic axis

can be obtained as a special case of the present equacions of motion. It
should be remarked that even thesc linear equations require consideration of
the geometric nonlinear tt! ‘rv of elasticity in order to obtain the linear
tension-torsion term (Tki@')' in the torsion equation and the linear tension-
bending terms, (Tw')' and (Tv')', in the flapwise and chordw.-e bending

equations, respectively.



CONCLUDING REMARKS

The second-degree nonlinear aeroelastic cquations of motion for a flexible,
twisted, nonuniform helicopter rotcr blade undergoing combined flapwise
bending, chordwise bending, torsion, and extension in forward flight have been
derived using the extended Hamilton's principle. The equations have their
basis in the geometric nonlinear theory of elasticity and are consistent with
the small deformation level of approximation in which the elongations and
she.ars (and hence strains) are negiigible compared to unity, but with no
restrictions or the rotations of the sections. A mathematical ordering scheme
which is consistent with the assumption of a slender beam was adopted for the
purpose of systemati~ally discarding elastic and dynamic terms which are of
higher order in the resuitant equations of motion. The generalized aerodynamic
forces are left in general second-degree form from which one can obtain the
aerodynamic loading to the order appropriate to any case of interest. The
influence of the assumed rotational trcnsfor ation sequence on the form of
the resultant equations of motion was examined for two of the six possible
transformation sequences: flap~lag-nritch and lag-flap-pitch. The present
results were compared to some of the more recent work on rotor dynamics which
is available in the literature. These comparisons indicatec. several dis-
crepancies with the present results, particularly in the nonlinear terms.

The reasons for these discrepancies were explained. On the basis of the
comparisons and considerations made herein, the principal findings of the
present study may be summarized as follows:

{1) The minimum level of upproximation within the geometric norlinear

theory of elasticity which is needed to obtain the second-degree norlinear
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equations of motion for a rotating blade is the case of small deformations

in which the elongations and shears (and hence the strains) are negligib =
compared to unity, with no restrictions on the rotations of the sections. 1In
particular, the level of approximation usually employed for elastic stability
(buckling) problems in which the strains and the rotations are negligible
compared to unity with the stipulation that the strains are smaller than the
rotations is inadequate for the case of the rotor blade.

(2) When deriving second-degree nonlinear equations of motion the engles
of rotation associated with the displacements must be treated as finite and
one must retain all terms through second degree in the dependent variables
in the resultant rotational transformation matrix between the coordinates of
the deformed and undeformed blade.

73) Since the angles of rotation associated with the elastic deformations
must be treated as finite, the individual rotation matrices are not commu-
tative and the resulting differential equations of motion are different in
come nonlinear terms depending on the sequence in wnich the individual
rotations are imposed.

(4) Several discrepancies in some nonlinear equations of motion existing
in the literatui. are identified and shown to be a consequence of a partial
linearization of the resultant rotational transformation matrix between the
coordinates of the deformed and the undeformed blade or the use of an incorrect
expression for the torsional curvature.

(5) The so-called "kinematic pitch rotation" term which has baen
ident’ fied in the rotor dynamics literature is shown to be s:urious.

(6) As a by-product of this study, some comments on a recent criticism

in the literature of the work of both Prandtl and Reissner pertaining to the

&4



lateral buckling of cantilever beams were made. It appears that Prandtl's
results are consistent with the use of the nonlinear torsional curvature
expression corresponding to a flap-lag-pitch rotational transformation sequence
while Reissner's results are consistent with the use of the nonlinear torsional

curvature expression corresponding to a lag-flap-pitch sequence.
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APPENDIX A
A COMMENT ON THE SLENDER BEAM APPROXIMATION

AND ATTENDANT ORDERING SCHEME : . .

In the case of a long, slender beam, the assumptions tlhat the shear
deformation and rotary inertia are negligible (ref.;15) and that terms of
the type nzv"z, czwfz, and niw'"v" may be discarded in the strain
expressions (ref. 18) are often imposed in the development of the linear
bending equations of motion for both rotating and nonrotating beams. These
assumptions are based on physical considerations related to the slenderness
of the beam in directions normal to its lengthwise axis. There appear to
be no comparable consider::tions for the more general case of the nonlinear
coupled flap-lag-axial-torsion equations of motion in a vacuum, such as
those used in stability analyses of flexib]l~ helicopter rotor blades. With
a view toward providing such considerations, this Appendix will first
examine the implications of the slender beam approximation as apnlied to
the linear uncoupled equations of motion of a rotating beam in bending,
torsion, and extension and introduce a mathematical cordering scheme which
is compatible with the assumption of a slender beam. Using the insight
gained in these specialized considerations, this Appendix will then examine
the implications of the slender beam approximation as applied to the second-
degree nonlinear coupled equations of motion of a rotating beam and introduce
an ordering scheme which is appropriate to this case. This latter ordering
scheme will form the basis of the development of the equations of motion in
the main text,

The assumptions attendant with the hypothesis of a slender beam car be

systematized by introducing a parameter € which is taxen to be of the same
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order as the nondimensionalized bending displacements v/R and w/R. The
order of the dependent variables appearing ir the equations of motion of
this report, as well as the pertinent geomecric quantities, are summarized

in equation (Al) below:

/R = 0(e?) n/R = 0(e)

v/R = 0(c) /R = 0(g)

w/R = 0(e) A/R* = 0(e) @D
$ = 0(e) A/R = 0(€)

x/R = 0(1) A /R = 0(e)

ch = 0(ec) Bpt = 0(1)

It should be noted that u/R is 0(62) rather than O(e) like v/R and w/R. This

was shown in reference 13.

Considerations for Uncoupled Equations
The linear uncoupled equations of motion of a rotating beam in bending,
torsion, and extension can be derived following the same procedure used to
derive the nonlinear equations of motjon in the main body of this report
and, in the absence of shear deformation, pretwist, and precone,* are

given by

*For simplicity, pretwist and precone are not included in the considera-
tions of this Appendix. However, their inclusion will not change these
considerations.

ORIGINAL pAQE 87
OF POOR QUALITY



x

Yoy p ey -

Bending:
o(e) o(ed) ) 0E)  0(e)
(e ")" ( kZ u')' + k2 ')'92 .o - (T ')v -0 (a2)+
¥ - (mk W wk W mw W

1 1

Torsion (with warping):
oe®)y o 0(e) 0(e)

"' 2 o2 02 _ .2 2,0
(G307 - m§ - a G, - a0+ (Tko")

0 oY) 0ee”) oy oeed)

- (EC,$") - Zmekﬂé' + (mki&' - 2me,04 - mkiﬂz¢') =0  (A3)

Extension:
0c?) 0@) oed) o)

. 2 2 !
mu - mRx - mR°u - (AEu') =0 (44)

where, from equation A4, the tensinon T 1is given by

R
AEu' = T = @7 mxdx + terms which give nonlinear terms in the (AS5)
X bending and torsion equations

The section properties associated with warping which appear in equation A3

are defined by

me, -[fpxc dndg mk;: =jﬁx"' dndg (46)

Usual mathematical practice whe. introducing an ordering scheme is to
first nondimensionalize the governing equations and then establish the

order of nondimensional parameters appearing as coefficients of the

tThe equation given is for vertical bending. One could alternatively
use the edgewise bending equation.
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(nondimensional) dependent variables in the resulting equations. 1f this
rigorous procedure is followed, one must retain all terms arising in the
development of the equations of motion before nondimensionalizing and
discarding higher order terms. In the case involving the nonlinear coupled
flap-lag-axial-torsion equations of motion, this procedure leads to an
almost insurmountable amount of algebra. To circumvent this problem to some
extent, usual practice in the literature dealing with the dynamics of
flexible rotor blades is to introduce an ordering scheme while developing
the dimensional equations of motion. The present development will follow
this practice here as well as in the main body of this report. Consistent
with this expedient, the order of each term appearing in equations (A2) to
(A4) as established using the ordering scheme given in equation (Al) is
shown above each term.

Consistent with the assumption of a slender beam, the rotary inertia
terms in the bending equation can be discarded as being negligible compared to
the translational inertia term in the equation, This means that, as far as
the generalized inertia forces in the bending equation are concerned, inertia
terms of 0(53) can be discarded compared to inertia terms of O0(g). The
elastic term (EIw")i although of 0(€3), cannot be discarded, however, since
both physical and mathematical considerat’ons dictate the retention of this
term. Thus, in accordance with slender beam theory, one must retain terms up
to O0(e) 1in the inertia forces and up to 0(63) in the elastic forces in
the linear bending equation. Extrapolating to the nonlinear case then, the
second-degree nonlinear bending equation would be obtained by retaining terms

up to 0(82), in the inertia forces and up to 0(84) in the elastic forces.
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In the linear torsion equation the dominant inertial and elastic terms
are of 0(63). The dominant inertial terms are of the same order as the
rotary inertia terms which were discarded in the bending equation under the
assumption of a slender beam. However, from both physical and mathematical
considerations, the third-order inertia terms appearing in the torsion
equation cannot be discarded. This implies that the ordering scheme associated
with the usual slender beam approximation as applied to the bending equation
cannot be applied to the torsion equation. In cther words, the slenderness
of the beam imposes no restrictions on torsion. In the absence of the
(underlined) warping terms, the second-degree nonlinear torsion equation
would be obtained by retaining terms through 0(64), that is, one order
higher than in :he linear equation, just as in the case of bending. The
highest order linear terms associated with warping are 0(85). Hence, if
one wants all the second-degree nonlinear terms associated with warping in
the torsion equation one must retain terms through 0(66).

In the extensional equation the dominant inertial term is of O0(l).
However, in order to obtain a physically meaningful and mathematically complete
linear equation, the inertia terms of 0(62) must be retained. Tt should be
noted that if the same ordering considerations which were applied to the
inertial terms in the bending equation are applied to the extensional equation,
the 0(82) inertia teims would be discarded. Thus, as for torsion, the
ordering scheme associated with the usual slender beam approximation as
applied to the bending equation cannot be applied to the extensional equation.
Hence, as for torsion, the slenderness of the beam imposes no restrictions
on the extensional equation. Recalling that u/R 1is 0(62), the second-

degree nonlinear extensional equation would be obtaine. by retaining terms
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up to 0(34) in both the elastic and inertia forces.

The ordering scheme associated with the above considerations for both
the linear and nonlinear uncoupled euqations of motion are summarized in
table Al below. The order appropriate to the case in which warping is not
considered in the torsion equation is indicated in parentheses. The ordering
scheme shown in table Al was obtained based on considerations for a rotating

beam. The same conclusions would have been reached if the beam had been

assumed to be nonrotating.

TABLE Al.- ORDERING SCHEME FOR UNCOUPLED EQUATIONS

Second-Degree
Linear Equatiomns Nonlinear Equations
Elastic Inertia Elastic Inertia
forces forces forces forces
Bending equations €3 € ea €2
Torsion equation 85(63) e () €6(€4) 66(54)
Extension equation 62 52 €4 EA

Considerations for Coupled Equations

The ordering scheme discussed above can be extended to the general non-
linear case in which the flapwise and edgewise bending, torsion, and extension
are coupled. Since u/R 1is of 0(62), the highest oirder term in the second-
degree nonlinear coupled torsion equation in the presence of warping would
be of 0(€7). Since the extensional freedom does not play a predominant role
in the coupled flap-lag-axial-torsion stability of helicopter rotor blades,
all tle nonlinear terms involving the extensional deformation u will be
discarded in the equations. Imposing this assumption, one then only has to

retain terms through 0(56) in all the equations. hNuw all the nonlinear
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terms of 0(86) in the resulting torsion equation are associated with warping.
It is believed that these nonlinear terms have a small effect on stability.
Hence, from an engineering point of view, these terms can be discarded in the
torsion equation. Furthermore, as far as the torsion equation is concerned,
it is believed that both the linear and nonlinear inertia terms of order
higher than 83 in the torsion equation have a small effect on stability and
hence, only terms up to 0(53) in the torsional inertia forces will be
retained. This means that one need now only retain terms up to 0(85) in the
elastic forces and up to 0(53) in the inertia forces in all .ke equations.
Rigid adherence to this ordering, however, leads to terms in the bending
equation which are of the same order as those discarded in the bending equa-
tion under the slender beam assumption. Hence, to be consistent, only terms
up to 0(64) in the elastic forces and terws up to 0(52) in the inertial
forces are retained in the nonlinear coupled bending equations. Since the
extensional freedom does not play a major role in the oupled flap-lag axial-
torsion stability of helicopter rotor blades, only linear terms will be
retained in the extensional equation. Based on all these considerations and
judgments, the order of the elastic and inertial terms which are retained in
the second-degree nonlinear coupled flap-lag-axial-torsion equations of

motion in the present development are given in table A2 below.

TABLE A2.- ORDERING SCHEME FOR SECOND~DEGREE NONLINEAR
COUPLED EQUATIONS.

Elastic furces Inertial forces
Bending equat lons EA 82
Torsicn = AL CS 53
Exteuslon equation LS 83
9.
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APPENDIX B
EQUATIONS OF MOTION FOR THE CASE OF SMALL DEFORMATIONS

AND SMALL ANGLES OF ROTATION

The nonlinear aerocelastic equations of motion of a rotatin helicopter
rotor blade are derived in the main body of this report consistent with the
case of small deformations in which the elongations and shears (and hence
the strains) are negligible compared to unity, with no restrictions on the
rotations of the sections. This particular level of approximation was
identified and discussed in reference 11 and was further discussed in
reference 13, where it was called the case of '"small deformations I."
Reference 13, following reference 11, also discussed a more restrictive
nonlinear level of approximation in which the elongations, shears, and

rotations are negligible compared to unity but the rotations are assumed

larger than the elongations and the shears. This second level of approximation,

which was called the case of '"small deformations II" in reference 13, is the
one usually employed in elastic stability (buckling) problems of nonrotating
structures. It 1is therefore of interest to examine the form of the nonlinear
equations of motion of a rotating blade which are obtained using this second
level of approximation and, by comparison with the equations obtained by the
first level of approximation in the main body of this report, to ascertain
the validity ¢f the second level of approximation for the case of a rotating
rotor b.ade. This comparative investigation is motivated by the results of
reference 13 which shows that the beam curvatures for the case of small
deformations Il are linear. This suggests that the use of this level of

approximation is not applicable for the derivat fon of nonlinear equations
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of motion.
For the case of small deformations II the rotational transformation
matrix relatirg the deforu~d and the undeformed coordinates is obtained from )

reference 13 by replacing ept by € and is given by the single relation

- -
1 v! w'
-v' cos © cos 8 sin 6
= B
[T]SDII -w' sin © ~-¢ sin 6 +¢ cos © (B1)
v' sin 6 -sin 2 cos 6
wa' cos © -$ ccs 6 -¢ sin €

Note that the resultant rotational transformation matrix given in equation Bl
is linear and is thus independent of the order in which the individual
rctations are imposed. Hence, the curvatures which follow from equation Bl
are linear and independent of the transformation sequence. In particular,

the torsional curvature is given by

ux3 ept+ o) (B2)

Using equations Bl and B2 in equation 9, the components of the position vector

for a generic point in the cross sectiin of the blade after deformation are

given by
X =X +u- UF - A(G;t +a') - v'y0 - w'zo
v + Yo ° ®zo
2) = w2+ By (53)
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et = g e

where
X, =% - )',t

Yo = N cos 6 - sin 6

z, =" afn A + 7 cos @ (B4)

Substituting equations B3 and B4 into equation 7 and performing the necessary ,
operations, the three strain components or interest assume the form

‘yn-exx-u'~A¢"-v"(ncose-§sme)

12
~w"(n sin 6 - ¢ cos 8) - (n? + %) (e’ Ooc * %‘)

= B - v '
Ye =26, gé

- - - '
Yag = X = MO (85)
Using equations B3 and BS, the equations of motion corresponding to the

case of small deformations II and the ordering scheme given in Appendix A

assume the form:

Extension:

n(u - EF) - me(v' cos 6 + w' sin 8) - 2nQ[v - e(é + é) sin A - e¢é cos 8]
-mﬂz(x +u - UF - ev' ccs § - ew' sin €)

+ mﬂzﬁpc(w + e gin 9 + ed cos 0)

* L
- {BA[u' + ki¢' 0" ¢ - €V cos B - e stn 0] + B’} = n, (B6a)
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Chordwise bending:

mv - me(d + é) sin 6 - ZmQch w - mﬂzkv + e cos £ - ed »in 0)

L}
- {me[QZx cos 0 + 20¥ cos 8]} - (Iv'")

+ 2mD (0 - ﬁF - ev' cos v - ew' sin 0)
- ' - ' ' - "
+{ EAeAu cos © EBZ¢ epc cos 0 ED2¢ sin @

o " EInn) sin B cos 6 + v" (EIHU sinze + EICC cos2 8)

* 2 2 e
+ E (ICCCOS 8 + Inn sin 8)v"} = Av (B6b)

+ w" (EI

Flapwise bending:

ow + me(a + 9) cos 8 + szB x + 2m0B v
pc pc

- {me[ﬂzx sin 6 + 20V sin 8]} - (Tw")

" S o S Lo | . A 1 N
+ {ECZ¢ cos 5 - EB,¢ Opt sin 9 FAe,u sin

+ w"(EL__ cos2 0 + EI, sin2 8) + v"(EI.. - ET_ ) sin = cos v
[ - ) A

l
] 2 "

A
+ E (L __ sin” > + Y = A
( - sin Ly COS dw u (B6c)

Torsion:
. o 2,,2 2 2 2
mkz(é + t) - rald7 (K sin® 9 + k cos V)
i ™, m

- . " ) o
tmelw cos - (v - u v) sin vl

ZmQ[e sin O (&4 - 0) - (k2 - k2 ' osin M ocos
F m m

2 1
2

S (kD sin? %+ kS cos? 6) - eB (¥ cos ' 4% sin )1
m, ml pc ‘

ko "

+ {Eclé" + ECy(w" cos ® - v siu 9) + b:cl:"}

-{ mkzu'(e' + 4" 4 HR 9'2 ¢+ G o+ E*B "'272"+ C*’/:'
A ,pt P h 4\_pt 3 l p[ e
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—1-:132[»:"(6;)t + ¢') sin 0 + v"(@}')t +¢') cos 8]}

=M, - mﬂz(k2 - k2 ) sin O cos 6 - mQZB ex cos O (B6d)
(o} m, my pc

The tension T appearing in equations B6é is given to second order by

R
T = fm[- (ii-ﬁF) + e(¥' cos O + w' sin 8) +2§2[\'r—e(¢$+é) sin 6]

X

+ Qz(x +u - UF - ev' cos 8 - ew' sin 0)

- Qzﬁpc(w + e sin 6)] dx (B7)

The terms UF and HF in the expression for T given in equation B7 lead
to third-degree nonlinear terms when T 1is substituted into equations B6
and can be discarded. Also, after substituting for T in these equations
only resulting terms which are consistent with the ordering scheme adopted

in Appendix A should be retained.

The generalized aerodynamic forces Au’ Av, and A¢ are obtained from

equations 70 and 71 using equations 66 and 68 where Ups UP’ and € are given by

UT = (v' cos 6 +w' sin 8) (URR cos Y + QRABPC -4+ Qv)

+ (¢ sin 6 - cos 6)[98pcw -v=- Q(x +u - UF) ~ UQR sin Y]

- (sin 6 + ¢ cos B8) (OR) - uQRBpC cos Y -~ w - QBPCV) (B8a)

Up = (w' cos 6 -~ v' sin 6) (AR cos Y + QRABPC -4+ Qv)

+ (sin 0 + ¢ cos 6)[QBpr -v - QUx +u -~ UF) - UQR sin Y]

+ (¢ sin 0 - cos 8)(QRA - uQRBpC cos Y - w - Qchv) (B8bH)
t = Q(ch +w') + ¢+ Bpe * 018 sin ¥ - 6, Q cos ¥ (B8c)
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Since the resultant rotational transformation matrix between the deformed
and undeformed blade coordinates (eq. Bl) is linear and thus independent of
the order in which the component rotations are imposed, the resulting non-
linear equations of motion are also independent of the order in which the
rotations are imposed and assume the unique form given in equations B6 to BS,
Comparing these results to those given in the main body of this report for
either the flap-lag-pitch sequence or the lag-flap-pitch sequence one can
identify several terms, both linear and nonlinear, appearing in the more
complete ec.ations given in the main text which are absent in the equations
corresponding to the case of small deformations II derived in -his appendix.

"
For example, the terms m92¢(k§ cos” 6 + ki sin2 8) are missing in

2 1
the torsion equation B6d. It should be pointed out that these terms, in

combination with the terms -m92¢(ki sin2 0 + ki cos2 8) which do appear in
2 1

the torsion equation, lead to the well-known linear centrifugal pitching

moment term m92¢(k§ - kz ) cos 2 6, Also missing from the torsion equation
2

given by B6d are the nonlinear bending-torsion structural coupling terms

2 "
"Ly 2)sin 0 cos 8)]. These terms were first dis-

EI - EI IR
( cc nn)[v w" cos 28 + (w
cussed in reference 31. The corresponding nonlinear bending-torsion coupling terms

in the chordwise and flapwise bending equations are given by [(EIC - EInn).

4
" "
(¢w" cos 26 - ¢v" sin 26)) and [(EICC - EInn)(¢v" cos 20 + ¢w" sin 26)] |
respectively., These terms are missing from equations B6b and Bbc.
Based on these comparisons it can be concluded that the level of approx-

imation usually employed in elastic stability (buckling) problems wherein the

elongations, shears, and rotations are negligible compared to unity but the
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rotations are assumed larger than the elongations and shears is not adequate
to develop the nonlinear equations of motion of a rotat‘ug helicopter rotor

blade.
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Figure 2.~ Coordinate systems of blade cross section.
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